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Numerical computation of spectral elements
In max-plus algebra

JEAN COCHET-TERRASSON*

MICHAEL Mc GETTRICK

Abstract

We describe the specidization to max-plus algebra of
Howard's policy improvement scheme, which yields an al-
gorithm to compute the solutions of spectral problems in the
max-plus semiring. Experimentally, the algorithm shows a
remarkable (almost linear) average execution time.

|. Introduction

The max-plus semiring R ., isthe set R U {—o0}, equipped
with max, written additively (a & b = max(a, b)), and 4, writ-
ten multiplicatively (¢ ® b = a + b). The zero element will be
denoted by 0 (0 = —o0), the unit element will be denoted by 1
(1L = 0). Wewill adopt the usual agebraic conventions, writing
forinstance ab for a @ b, 0 for the zero vector or zero matrix (the
dimension being clear from the context), etc.

The spectral problem for amatrix A € (Rpax)™*" can be
writen as

Az = Az | (@D}

wherez € (Rmax)” \ {0} and A € Ryay, i.€ with the usua
notation
Vie{l,...,n}, 1rsnjasxn(Aij +z;) = M+,

(2

where z € (R U {—oco})” has at least one finite entry, and
A € RU{—o0}. Asusua, wewill call A aneigenvalue, and z an
associated eigenvector. Whereas the max-plus spectral theorem,
which characterizes the solutions of (1), isone of themost stud-
ied max-plus results', comparatively little can be found about
the numerical solving of (1). Unlikein usua agebra, the max-
plus spectral problem can be solved exactly in afinite number
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of steps. The commonly received method to solve (1) relies on
Karp’s algorithm [20], which computes the (unique) eigenvalue
of an irreducible? matrix A in O(n3) time? (in fact, O(n x E)
time, where E isthe number of non-0 entries of A), and* O(n)
space®. Then, some additi onal manipul ationsallow oneto obtain
a generating family of the eigenspace, to compute other inter-
esting spectral characteristics such as the spectra projector, the
cyclicity, etc. (see[1, §3.7]). A good bibliography on the maxi-
mal cycle mean problem, and a comparison of Karp’s algorithm
with other classical agorithms, can be foundin [9].

The purpose of this paper isto describe avery different algo-
rithm, which seems more efficient, in practice.

We will show how the specialization to the max-plus case
of Howard’'s multichain policy improvement agorithm (see
eg. [10], or [23] for asurvey), which iswell known in stochas-
ticcontrol, runsintime® Ny O(E) and space O(n), where Ny is
the number of iterations of the agorithm. Although Nz, which
depends on both n and the numerical values of the entriesof A,
seems difficultto eval uate, itsaverage valueissmall (experimen-
tal tests on full matrices suggest Ny = O(log n)).

In other words, it seems experimentally possibleto solveinan
almost linear (i.e. amost O(F)) average time afamily of com-
binatoria problems for which the best standard algorithms run
inO(n x E) time.

We conjecture that the worst case val ue of the number of iter-
ations Ng ispolynomia in £. Examples show that it isat least
of order n.

The max-plus version of Howard's algorithm outperforms
other known methods with good average execution time, such
aslinear programming. The only other fast method known to us
is Cuninghame-Green and Yixun'salgorithm [8], which runsin
time Ncy O(E), where the average va ue of the number of iter-
aions Ny isexperimentaly O(n°-8) for full matrices, accord-
ingto [8].

2Irreducibility is defined in §111 below.

3 Throughout the paper, “time” and “ space” refer to the execution time (on a
sequential machine) and to the memory space required by the algorithm, respec-
tively.

4The natural implementation of Karp's algorithm, described in [20], needs
O(n?) space. However, it is easy to design atwo passes variant, which needs
adoubletime, and runsin only O (n) space. Asdetailedin [9], itisalso possible
to optimize Karp’s algorithm using the sometimes sparse character of the matrix
that it builds.

5The family of Howard's algorithms works only for *non-degenerate” matri-
ces with at least one non-O entry per row. For such matrices, » < FE, and
O(E)=0(n+ E).



Some parts of the present work were initiated in [3], and de-
veloped in adifferent directionin [4, 12]. It is remarkable that
Howard's policy improvement scheme not only provides effi-
cient algorithms, but aso simple existence proofs. In particular,
the existence of generalized eigenmodes for max-pluslinear dy-
namical systemswith several incommensurable delays, whichis
stated in § 111 below, seems new. A similar proof technique was
applied to min-max functionsin [12].

The paper is organized as follows.

In section |1, we motivate the max-plus spectra problems, by
showing how familiar problemsin Discrete Event Systems the-
ory and Operations Research reduce to the spectral problem (1),
and to some of its extensions.

In section 111, we briefly recal the very classical character-
ization of eigenvalues of max-plus matrices. We discuss their
relation with cycle time vectors, which govern the asymptotic
behavior of max-pluslinear dynamica systems. We show how
these cycle times can by computed from generalized eigen-
modes, which are anon classical useful extension of the notion
of eigenvector, aready used in [12].

In section 1V, we describe the max-plus version of Howard's
policy iteration agorithm, which computes generalized eigen-
modes, and which in fact shows that such eigenmodes exist.
The only noticeable originality, by comparison with the classi-
cal stochastic control case, isthat a value determination step can
be performedintime O(n), using aspecia graph explorational-
gorithm that we present in detail.

Insection V, illustrativeexamples and systematical numerical
tests are presented.

A small prototype, written in C, which implements the max-
plus policy iteration a gorithm described here can be found cur-
rently on theweb page http://amadeus.inria.fr/gaubert. Thispro-
totype will be integrated in the max-plus toolbox of SCILAB®
which isunder devel opment.

[I. What the max-plus spectral theory can do for you

In this section, we list several basic problems that reduce to
the spectral problem (1) and to some of its extensions. Other
applications of the max-plus spectra problem can be found e.g.
in[22, 14], and in the references therein.

PROBLEM 1 (MAXIMAL CIRCUIT MEAN). Given a directed
graph’ G = (N, &), equipped withavauationmapw : £ — R,
compute the maximal circuit mean

e w(e)
p=max ————

¢ EeEc 1 ’

wherethemax istaken over all thecircuits ¢ of G, and the sums
are taken over all theedges e of c.

3

The denominator of (3) isthe length of circuit ¢c. The numer-
ator isthevaluation or weight of circuit c.

6 A free open MATLAB-analogue software, developed at INRIA. The current
version of SCILAB (without the max-plustoolbox) can be found on http://www-
rocg.inriafr/scilab.

A (finite, directed) graph can be described by afinite set of nodes A’ and a set
of (oriented) edges€ C N x N. Inthe sequel, we will usethe familiar notions
of (directed) path, (directed) circuit, etc., without further comments.

By Theorem 111.1 below, when G is strongly connected,
p coincides with the (unique) eigenvalue of matrix A €
(R max) V>V, defined as follows:

15={6%

if (4,7) € &,
otherwise.

(4)

Conversaly®, with any matrix A € (Rppax)™*", we will asso-
ciate the graph G 4 with set of nodes A = {1,...,n} and set
of edgesE = {(4,5) | Ai; # 0}, equipped with the valua-
tionw(s, j) = Aj;. Thisbijective correspondence between val-
ued graphs, on the one hand, and max-plus matrices, on the other
hand, will be used systematically in the sequel.

PROBLEM 2 (CyCLE TIME). Givenamatrix A € (Rpyax)™*"
with at least onefiniteentry per row, computethe cycletimevec-
tor

1
x(A4) = lim — x z(k) , (5)
k—oo k
where
z;i(k) = max (Aijj+z;(k—1)), V1<i<n, YkeN\{0},
<j<n
(6)

and theinitial condition z(0) € R” isarbitrary.
Of coursg, (6) is nothing but a linear system in the max-plus
semiring:

o(k) = Ax(k—1),  VkeN\{0} . ©

In other words, the cycle time vector x(A) determines the lin-
ear growth rate of the trgjectories of the max-pluslinear dynam-
ica system (7). The fact that x(A) exists, that it is indepen-
dent® of theinitial conditionz(0) € R™, and that it can be com-
puted from the eigenvalues of the submatrices associated with
the strongly connected components of the graph of A, will bede-
tailed in Prop. 111.2 below.

We next describeauseful generalization of the max-plus spec-
tral problem, which requires the definition of max-polynomias.
A (formal, generalized) max-polynomial in theindeterminate
issmply aforma sum @, .+ p:7', Wherep isamap R+ —
R hax, T — pt, SUch that p, = 0 for al but finitely many values
of t € Rt. Wedenoteby R ,.x{7v} theset of such polynomials.

The generalized spectral problem for a polynomia matrix
A € (Rpax{7})"*" can be written as:

AAd Nz =z | (8)

8 Note that accordingto (4) and throughout the paper, thereisan arc froms: to ;
if A;; # 0. This"direct” convention, which is standard in combinatorial matrix
theory and automatatheory, was already used in [14]. The“inverse” convention
(with A;; # Oinsteadof A;; # O)wasusedin[1]. This“inverse” conventionis
standard and preferablefor discreteevent system applications, unlessoneaccepts
to deal with linear systems of theform z(k) = z(k — 1) A, z(k) being arow
vector, and A asquarematrix, instead of the more familiar z(k) = Az(k — 1),
z(k) being a column vector. A consequence of the compromise made in this
paper (choosing the “direct” convention, while considering dynamical systems
of thesecond form) isthat theaccessibility relation, in Prop. [11.2 and 111.4 below,
istheinverse of theoneused e.g. in [1, 18].

91f someentriesof z(0) areinfinite, thelimit in (5) need not exist, seee.g. [11,
Remark 1.1.10, Chap. VI] and [14, Th. 17]. The condition that all the entries of
z(0) arefinite, and that A hasat least onefinite entry per row (which guarantees
that A sendsR™toR™, i.e. that theimageby A of acolumn vector with finite
entrieshasfinite entries) isfrequently used sinceit seems practically relevant for
discrete event systems and makeslife simpler.



where z € (Rpax)™ \ {0}, A € R,and A(A7Y) € (Rypax)™ "
denotes the matrix obtained by replacing each occurrence of the
indeterminatey by A=! (= — ), with the usual notation) in the
formal expressonof A. If A = @, g+ Ayt with A, €
(Rmax)" ™", the spectral problem (8) can be rewritten more ex-
plicitly as
@ AN e =1 | (9)
teR+
where the sum is indeed a finite one, since A; is 0 for al but
finitely many values of . When A = A~, (9) specidizesto (1).
For thisreason, wewill call z ageneralized eigenvector of .4 and
A ageneralized eigenvalue.

The appropriate graphical object to be associated with a poly-
nomial matrix A € (Rmax{7})"*" is not a valued directed
graph, but the bi-valued directed multigraph® G4, with set of
nodesN = {1,...,n},setof edges& = {(i,¢,j) € N x Rt x
N | (A¢)s; # 0}, initid nodemap In(Z, ¢, j) = 4, termina node
map Out(i,t,j) = j, first valuation w : w(i,t, j) = (Ai)ij,
and second valuation r : 7(i,t,5) = t. Then, the generalized
spectral problem (8) becomes

VZEN, I = Inax (w(zat:])_)‘XT(lata])—i—I]) .

(it,j)€E
(10)
Wewill seein Theorem I11.3 that the solution A of (10) (which
is unique under natural conditions) yields the solution p’ of the
following problem.

PROBLEM 3 (MAXIMAL CIRCUIT MEAN'). Given a multi-
graph G = (N,&,In,Out), equipped with two valuations
w: € > R, 1t & = RY, suchthatZeEcr(e) > 0, for
all circuits ¢ of G, compute the (generalized) maximal circuit

mean:
p/ — max EeEc 'lU(@)

¢ ZeEc 7'(6) ’

where the max istaken over all thecircuitsc of G.

Asshown in Prop. I11.4 below, the generalized spectra prob-
lem (8) isalso useful in the effective computation of cycle times
of some max-pluslinear dynamica systems, that are infinite di-
mensiona (multi-delay) versions of (7).

We will say that A = @, g+ Ay’ € (Rmax{y})"*" isa
good polynomial matrixif it hasat least onenon-0 entry per row,
and if there are no circuitsin the graph of Ag.

(1)

PROBLEM 4 (CycLE TIME'). Givenagood polynomial matrix
A € (Rpax{7})"*", compute the cycle time vector

x(A) = lim 1 x z(k) | (12)
k—oo k
where thetrajectory « is now given by the dynamics
z;(k) = max max((As)i; +z;(k—1)), VE>0, (13)

1<j<nteR+

and (z(k))o>k>—k, iSagiven (bounded) initial condition, with
Ko = max{t € Rt | A; # 0}.

101 oosely speaking, amultigraphisagraphinwhich several edgescanlink the
same pair of nodes. Formally, a (finite) multigraph can be defined by a (finite)
set of nodes A, a (finite) set of edges £, and twomaps|In : £ — A and Out :
€ — N, which givetheinitia nodeand terminal node of an edge, respectively.

More agebraicaly, (13) can be rewritten as follows:

z(k) = P Ak —1), Yk >0 .
teR+

(14)

Remark 11.1. Problems 4 and 2 are in fact two special versions of a
more general problem (seee.g. [19]). If X" isanormed vector space and
f: X — X isanon-expansivemap (i.e. || f(x) — f(v)]| < |l — yl).
the limit x(f) = limg 1/k x f*(), if it exists, is independent of the
initial point z. Problem 2 deals with the case when X" isequal to R™,
equipped with the sup norm, and f(z) = Az. In Problem 4, X' isthe
set of bounded functions from [— K, 0) to R"™, equipped with the sup
norm, and f isthe evolution operator which with the piece of trajectory
{z(k)}_ Kk, <r<o (initiad condition), associates the trajectory obtained
after one unit of time: {z(k + 1)} —x,<r<o- Theevolution operator is
obviously well definedsincethereareno circuitsinthegraph of Aq. Itis
clearly monotone and homogeneous, hence, by asimple result [5], it is
non-expansive for the sup-norm. Thus, the existence of the limit (12)
for a particular bounded function {z(k)} _ x, <k <o, implies the exis-
tence of x(f), which is equal to x(.A). Conversely, the existence of
x(f) clearly implies that the limit (12) exists, with x(A) = x(f).

[11. Someclassical and less classical elements of max-plus
spectral theory

Indl thissection, withamatrix A € (R pax)™*" We associate
thegraph G4 = (N, £), equipped with the valuation w, as de-
fined in the discussion following Eqn 4. The strongly connected
components of thegraph of A are called classes. A matrix isir-
reducible if its graph is strongly connected, i.e. if it hasasingle
class. The following result is classica [24, 26, 6, 15, 16]. See
eg. [1, 7] for recent presentations and proofs.

THEOREM 111.1 (MAX-PLUS SPECTRAL THEOREM). Anirre-
duciblematrix A € (Rmnax)™*" hasa unique eigenvalue, given

by (3).

In general, there are severa non-proportiona e genvectors
(see eq. [1] or [14]). A reducible matrix A hasin genera sev-
eral distinct eigenva ues, and themaximal circuit mean (3) yields
precisaly themaximal eigenvalue (see e.g. [11, Ch.I1V], [14], [2]
for characterizations of the spectrum of reducible matrices).

We say that i has access to j if thereisapath fromi to j in
the graph of A. We say that i has access to a class C' if it has
access toany j € C (this property is obviously independent of
thechoiceof j € C, by definition of aclass). By “eigenvalue of
aclass C”, we mean the eigenvaue of the C' x C' submatrix of
A, which isuniqueby Theorem I11.1.

The following result appeared in [18, Prop. 7], and, in a
stochastic context, in [1, Th. 7.36].

PROPOSITION 111.2 (CYCLE TIME FORMULA). Let A €
(Rmax)™*™, with at least onefinite entry per row. Thei-th entry
x:(A) of the cycle time vector is equal to the maximum of the
eigenval ues of the classes to which i has access®.

The next statement uses the correspondence between polyno-
mia matrices and multigraphs, described in § 11 above. We will
say that a polynomial matrix A isirreducible if its multigraph
is strongly connected. More generally, we will naturally extend
the notions of accessibility, classes, etc. to polynomia matrices
(these notionsare defined asin the case of ordinary matrices, but



replacing the graph G4 by the multigraph G 4). The following
result istaken from [1, Th. 3.28]

THEOREM 111.3 (SPECTRAL THEOREM'). An irreducible
polynomial matrix A = @, g+ 47" € (Rmax{7})"*"
such that the graph of A, has no circuits'!, admits a unique
generalized eigenvalue ), given by (11).

The following extension of Prop. 111.2 isimmediate.

PrROPOSITION I11.4 (CycLE TIME FORMULA'). Let.A denote
agood polynomial matrix. Thei-th entry x; (.4) of thecycletime
vector isequal to the maximum of the generalized eigenval ues of
the classes to which i has access®. O

Since the decomposition of a directed graph or multigraphin
strongly connected components can be done in linear time us-
ing Tarjan's dgorithm [25], Prop. I11.2 and Prop. I11.4 reducein
linear time the computation of the cycle time vector to the com-
putation of the (possibly generalized) eigenvalues of irreducible
(possibly polynomial) matrices. In particular, thetraditional way
to compute the cycle time vector x(A) isto compute the eigen-
values of the classes of A viaKarp's agorithm [20], and then
to apply Prop. I11.2. This method does not work for the gen-
eralized dynamics (13), since Karp’s algorithm cannot compute
generalized eigenvalues. There aretwo traditiona waysto over-
come this difficulty. — When A, iszero except for integer val-
ues of ¢, an elimination of the implicit part and a familiar aug-
mentation of state reduces the generalized spectra problem for
A to an ordinary spectra problem for a larger matrix A’. This
method, which is presented in [1, § 2.5.3,§ 2.5.4], is hot so ex-
pensive when the number of values of ¢ for which A, # 0 is
small, particularly if it isimplemented with some refinements, as
in[13], for A = Aq & A;vy. — The second method relies on the
general techniques presented in [17, Appendix V], which alow
one to maximize in pseudo-polynomial time aratio of the form
w(e)/(c) for cin afinite set S, provided that for any value of
A € IR, we know how to maximize in polynomial timetheratio
w(c) — At(c) for cinthesame st S.

We will not discussin detail these two more or less classical
approaches, but rather show how adifferent generalization of the
spectral problem alowsusto determinedirectly and in full gen-
erality cycle time vectors. All the remaining part of this paper,
and in particular, the max-plus version of Howard's policy im-
provement agorithm, will be based on this new spectral prob-
lem.

We consider a good polynomia matrix A. We say that
(n,z) € (R™)? isageneralized eigenmode!? if there exists

n[1, Th. 3.28], it is only required that the circuits of the graph of A, have
negativeweights. We will not need thisdegree of generality here. Interms of the
associated dynamical systems (13), the condition of the theorem simply means
that there are no circuits involving zero-delay causality relations.

12 This spectral notion is obtained by two successive generalizations of or-
dinary spectral problems. The first generalization consists in replacing ordi-
nary dynamical systems of the form (7) (with unitary delays) by systems of the
form (14) (with multiple delays). The ordinary spectral problem (1) and its gen-
eralization (9) are obtained by looking for solutions of the form =(k) = Az,
where X isascalar and z € (Rmax)™ \ {0}. But the definition of cycle-time
vectors requires z to have finite coordinates. Then, in the general case, a sim-
ple affineregime z(k) = Mz = k x (),...,\)T + = need not exist, but
amore generd affine regime z(k) = D*z, where D is a diagona matrix, is
expected. In other words, we expect the different entries of = (%) to have dif-

K € R such that

keR, k>K = Dfz=AD YDz , (15

where D & diag(ni,...,n.) and D* = diag(k x n1,...,k x

77n)-
When A = A~, (15) becomes

keR, k>K = DFe=AD 1z | (16)

That is, the action of A coincides with the action of D on the
orbit {D*z},> k1. As detailed in footnote 12, the eigenmode
equation (15) is obtained by looking for an ultimately affine so-
lution of (13), z(k) = D*z = k x n+ z. If such asolution
exists, x(A) = limy + x z(k) = 5. The next lemma follows
readily from this observation, and from the fact, mentioned in
Remark 11.1 above, that the limitlimy, + x 2 (k) = 5 isindepen-
dent of the particular bounded initia condition.

LEMMA 111.5. If agood polynomial matrix.4 hasa generalized
eigenmode (7, z), then x(A) = n. O

In particular, if A isirreducible, Prop. 111.4 impliesthat n =
x(A) = (A, ..., A), where X is the generaized eigenva ue of
A. Therefore, (15) reduces to the (generalized) spectral prob-
lem (8), and = is a(generalized) eigenvector of A. l.e, forirre-
ducible matrices, finding generalized eigenmodes is equivalent
to finding generalized eigenvectors.

The existence of generalized eigenmodes was proved in [12]
when A = A, asaspecia case of amoregeneral result for min-
max functions. In the next section, we will show how the max-
plus version of Howard's policy improvement algorithm alows
us to compute generalized eigenmodes. In particular, the termi-
nation of the agorithm will prove the existence of such eigen-
modes, for good polynomial matrices.

V. Themax-pluspolicy improvement algorithm

In this section, A will be a good polynomia matrix. We
will use systematicaly the multigraph G4 = (N, &, In, Out)
equipped with the valuations w, 7, canonically associated with
Ain§ll.

It can be checked that the eigenmode equation (15) which
seems deceivingly to involve an infinite number of conditions,
is equivaent to the following finite system:

. = : 17

n (AKX 17)

z; = max_(w(i,t,j)—7(,t,75) xn; +z;) , (18)
(i,t,5)€E

where £ = {(i,t,j) € €| m = n;} -

In loose terms, the multichain policy iteration agorithm will
solve this system by trying to guess the arcs that attain the max-
imum. A precise statement of this idea needs the definition of

ferent (linear) growth rates, given by the diagonal entries of D. Hence, the sec-
ond generalization consistsin substituting (k) = D*z for & large enough (i ..
k > K + Kj)in (14): then, one obtains precisely the generalized eigenmode
equation (15). Contrary to the casewhen D = A, D! need not commutewith
the matrices A¢, and thus, the relation z = A(D~")z = P, gy A:D ™'z
need not imply that D*z = A(D~1)D*z, for k > 0. Thisiswhy (15) hasto
be stated for all large &.



policy, whichisamap
7: N = &, suchthat In(w(:)) =i, Vie N .

That is, apolicy isjust amap which with a node associates an
edge starting from this node.

With a policy 7, we associate the specia polynomia matrix
AT = @tER'F AfAyt:

(AT);; = {g}(ﬁ(z)) if j = Out(m(?)) and t = 7(m (%))

otherwise.
Hence, the matrix .A™ has exactly one non-zero entry per row,
which corresponds to the edge selected by , i.e. in the multi-
graph of A™, =(¢) is the unique edge starting from i. It has
the same valuationsw and = asin the original multigraph of A.
E.g., we have depicted in Fig. 2 below the multigraph (in fact,
the graph) of .A™, where 7, isthepolicy 1 — 1,7 — 2, for
i =2,3,4and A = Av, where Aisdisplayedin Fig. 1.
Wefirst show how ageneralized eigenmode (n, x) of amatrix
of theform A™ can be computed in time O(n).

ALGORITHM IV.1 (VALUE DETERMINATION). Input: agood
polynomia matrix .4 and a policy . Output: a generalized
eigenmode of A™.

1. Find acircuit ¢ in the multigraph of A™

2. Set
ﬁ _ ZeEc w(e)
2iceeT(E)
3. Select an arbitrary node i in ¢, set n; = 77 and set z; to
an arbitrary value, say z; = 0.
4. Visitingall thenodes j that have accessto ¢ in backward
topological order, set

(19)

o= 7 (20)
w(m(§)) =7 x 7(7(j)) + Tour(s)) (21)
5. If thereisanonempty set C' of nodes ; that do not have

access to i, repeat the algorithmusing the C' x C' submatrix
of .4 and therestriction of = to C.

r; =

The a gorithm should be specified as follows.

Step 1 is very easy to implement: we can start from an ar-
bitrary node ¢, move to node j = Out(x(¢)), then possibly to
node Out(7(j)), etc., until anodethat isaready visitedisfound.
Then, acircuit has been found. Thisrequiresalinear time.

Eqgn (21) requires visiting the nodes in backward topological
order, starting from i, since the value of z oy~ (;)) must be a-
ready fixed when we visit node j and set « ;. Thiscompletevisit
can be doneinlinear time, at the price of an apriori tabulation of
the (multi-val ued)-inverseof themap N — N, j — Out(w(5)).
Computing the inverse of this map also requires a linear time.
The handling of thisinverseisin fact the only part of the ago-
rithm which requires more refined data types than simple arrays
(in our implementation, we used linearly chained lists).

Step 5 is formulated in a recursive way only to simplify the
statement of the algorithm, which is essentially non recursive.

The above considerationsjustify the following theorem.

THEOREM 1V.2. AlgorithmIV.1 computes a generalized eigen-
mode of .A™ in time and space O(n). O

The second ingredient of Howard's algorithmis a policy im-
provement routine, which given a policy = and a generalized
eigenmode (n, ) of A", either finds a new policy 7’ such that
x(A™) > x(A™), or provesthat (7, z) is a generalized eigen-
mode of A.

ALGORITHM IV.3 (PoLICY IMPROVEMENT). Input: a good
polynomial matrix .4, a policy w, together with a general-
ized eigenmode (n, z) of A™. Output: a policy =, such that
X(A™) > x(A").

1. Let?3
J = {i P>
{i] (AT ni}
K(i) = argmaxn;, fori=1...n,
(i,t,5)€EE
I = {1 max wl(e) —r(e)n; + x;) > x;
1, max  (wle) = (e +29) > 1)
L(i) = argmax (w(e) — 7(e)n; + ;) ,

e=(i t,7)EK (i)
fori=1...n.

2. 1f I =J =0, (n,z) isageneraized eigenmode of .A.
Stop.
3. @ IfJ#£0,weset:

e anyeinK(:) ifielJ,

m@) = {w(i) ifigJ.
(o) If J=0but ! # 0, weset

ren anyee L(i) ifiel,

™) = {w(i) ifigl.

The policy improvement rules 3a and 3b simply mean that
one selects for the new policy the edges which realize the maxi-
mum in Eqns (17), (18). This maximum istaken hierarchically:
Eqgn (17) has priority on Egn (18) in apolicy improvement step.
Only when Egn (17) issatisfied Egn (18) isused to determinethe
new policy. Theother conditionsin steps 3aand 3b simply mean
that the preceding values of 7 should be kept in 7, whenever
possible. These technical tricks will guarantee the termination
of the policy iteration a gorithm bel ow, even when “ degenerate”
policy improvementsin which x (A™ ) = x(.A™) occur.

The sets K (¢) and L(7), which are introduced to simplify
the statement of the algorithm, need not be explicitly tabulated.
Clearly, Algorithm 1.3 runsin O(|£|) time'* and O(n) space'®

We next state the max-plus version of Howard's policy itera-
tion algorithm.

ALGORITHM V.4 (MAX-PLUS POLICY ITERATION). Input:
agood polynomia matrix .A. Output: a generalized eigenmode
of A.

1. Initialization. Select an arbitrary policy =;. Com-
pute ageneraized eigenmode (n!, z!) of A™, using Algo-
rithmIV.1. Set k = 1.

13Recall that by arg max, ¢ f(€), wemeanas usual the set of elementsm €
€ suchthat f(m) = maxece f(€).

14 1£| simply denotesthe number of edges of the multigraph.

15 The algorithm needslessinternal memory (O () space) than the coding of
theinput itself, which requires O (|£]) space.



2. Policy improvement. Improve the policy 7, using Al-
gorithm IV.3 withinput 7 = 7, n = 5,z = z*. If the
stopping condition of Algorithm IV.3 is satisfied, (n*, z*)
is a generalized eigenmode of 4. Stop. Otherwise, set
mr+1 = 7 (the output of Algorithm1V.3).

3. Value determination. Find a generalized eigenmode
(n*tl k1) of A™++1 using Algorithm 1V.1, taking the
specia valuezf ! = =¥ instep 3,IV.1.

4. Increment k£ by one and go to step 2.

The algorithm builds a sequence of generaized eigenmodes
(n*, z*) that isstrictly increasing for the lexicographic order on
(R™)?%, defined by (z,y) <ie (2/,y) if 2 < 2/ or ¢ =
¢’ and y < y'. The fact that =5+ must be set to ¥ in step 3
of Algorithm IV.1 is a conservative trick analogous to the fact
that the values of 7 are kept in ©/ whenever possible, in Algo-
rithm IV.3. Thistechnical conditionisessentia to guarantee the
strict monotonicity of the sequence (n*, z*), which isneeded in
the proof that the algorithm terminates.

The proof of thefollowing result is similar to the proof of the
main theorem of [10]. It relies essentialy on a version of the
maximum principle for transient Markov chains. A more age-
braic version of this proof, using germs of affine functions, ap-
pearsin [4], and in the proof of the results announced therein.

THEOREM 1V.5. The max-plus policy iteration algorithm ter-
minatesinanumber of iterations Nz whichislessthanthenum-
ber of policies. One iteration requires'* O(|€]) time. The algo-
rithmrequires O(n) space'®. O

Indeed, thesame policy isnever selected twice. Bounding N g
by the number of policieswhich isfinite but exponentia isvery
coarse. On experimental random examples, Ny isvery small, as
detailedinsectionV below. Thefollowingresultisanimmediate
consequence of the termination of the policy iteration algorithm
and of Lemmallll.5.

COROLLARY 1V.6. A good polynomial matrix .4 has a gener-
alized eigenmode (7, ). In particular, thecycletime x(A) = 7
exists. n
Remark IV.7. Howard's algorithm is not limited to spectral problems.
It is possibleto design policy iteration algorithms for fixed points equa-
tionsof theformz = Az @b, where A isasguare matrix with maximal
eigenvalue strictly lessthan 1, and b a column vector. This will be de-
tailed elsewhere.

V. Examplesand numerical tests
A. lllustrative example

We apply the max-pluspolicy iteration a gorithmto determine
the eigenvalue of the matrix displayed in Fig. 1. This corre-
sponds to the case where A = Ay, and = = 1. In particular,
the multigraph of .A will be identified with the graph of A.

i

Fig. 1. A matrix and its graph
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Thefollowing run of thealgorithmisvisualizedinFig. 2. We
choose the initid policy m1: 1 — 1,¢ — 2,for¢ = 2,3,4.
Applying Algorithm V.1, wefind afirst circuit ¢, : 1 — 1, with
7= w(c)/m(c1) = 1. Wesetpl = 1,2} = 0. Since 1 isthe
only nodewhich has accessto 1, we apply AlgorithmIV.1to the
subgraph of G 4 withnodes2, 3, 4. Wefindthecircuites : 2 — 2
and set 7 = w(ea)/7(ca) = 3,n3 = 3andzi = 0. Since
3,4 have accessto 2, we set ! = 3 for i = 3,4. Moreover, an
applicationof (21) yiddszl =4 -3+ 2}, 2z} =2-3+21. To
summarize:

n=[133 3], 2'=[0 0 1 —1]"
We improvethe policy using Algorithm1V.3. Since J = {1} #
(), we have a type 3aimprovement. Thisyieldsm, : i — 2, for
i=1,2,3,4. Only theentry 1 of z! and »' has to be modified,
which yields

=[3 33 3], 2°=[-1 01 -1]"

We next tabulate with less detail s the end of the run of the algo-
rithm. Algorithm V.3, type 3b policy improvement. 73 : 1 —
4,2 > 3,3 — 2,4 — 3. Algorithm 1V.1. Value determination.
Circuitfound, ¢ : 3 - 2 — 3,77 = (w(2,3) + w(3,2))/2 =
9/2.

7=

Algorithm1V.3, type 3b policy improvement. The only changeis
m4(3) = 4. Algorithm1V.1. Value determination. Circuit found,
c:3—24-3,7=(w(3,4)+w(4,3))/2=11/2.
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Algorithm1V.3. Sop. 11/2 isan eigenvalue of 4, and z* isan
eigenvector.
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Fig. 2. The sequenceof policies built by the max-plus policy iteration
algorithm, for the matrix A displayed in Fig. 1. The valuations of
the nodesindicatethe vectorsz*, k = 1... , 4.

B. Numerical Tests

The results of the numerical experiments displayed in
Fig. 3,4,5 should be self-explanatory.
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Fig. 3. Number of iterations Nz of Howard's algorithm as afunction

of the dimension, for full random matrices, with i.i.d entries dis-
tributed uniformly on an interval.
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Fig. 4. Cputime (in sec.) of Howard's algorithm (in red) vs Karp’'s

(1
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algorithm (in black) on a pentium 200Mhz with 500Mb of RAM,
as a function of the number of arcs for full random matrices (same
probabilistic characteristicsasin Fig. 3).
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