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Abstract

We describe the specialization to max-plus algebra of
Howard’s policy improvement scheme, which yields an al-
gorithm to compute the solutions of spectral problems in the
max-plus semiring. Experimentally, the algorithm shows a
remarkable (almost linear) average execution time.

I. Introduction

The max-plus semiring �	��

� is the set ����������� , equipped
with max, written additively ( ������� �"!$#&%'�)(*�,+ ), and - , writ-
ten multiplicatively ( ��./���0��-/� ). The zero element will be
denoted by 1 ( 12�3��� ), the unit element will be denoted by 4
( 45�/6 ). We will adopt the usual algebraic conventions, writing
for instance �7� for �8.�� , 1 for the zero vector or zero matrix (the
dimension being clear from the context), etc.

The spectral problem for a matrix 9;:<%=� �>
?� +A@CB7@ can be
writen as

9�DE�GF)D3( (1)

where D�:H%I� �>

� +J@LKM�N1O� and F�:�� �>

� , i.e. with the usual
notation

POQ :R�TSU(WVXVWV
(ZY[�7( ��!�#\Z]7^�] @ %_9�`
^ -�D ^ +>� Fa-�D&`?( (2)

where Db:c%=�d�e�������N+J@ has at least one finite entry, and
F�:2�f���U�g��� . As usual, we will call F an eigenvalue, and D an
associated eigenvector. Whereas the max-plus spectral theorem,
which characterizes the solutions of (1), is one of the most stud-
ied max-plus results1, comparatively little can be found about
the numerical solving of (1). Unlike in usual algebra, the max-
plus spectral problem can be solved exactly in a finite number
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of steps. The commonly received method to solve (1) relies on
Karp’s algorithm [20], which computes the (unique) eigenvalue
of an irreducible2 matrix 9 in oE%pYOqW+ time3 (in fact, oE%pYsrfta+
time, where t is the number of non- 1 entries of 9 ), and4 ou%'YC+
space q . Then, some additionalmanipulationsallow one to obtain
a generating family of the eigenspace, to compute other inter-
esting spectral characteristics such as the spectral projector, the
cyclicity, etc. (see [1, v 3.7]). A good bibliography on the maxi-
mal cycle mean problem, and a comparison of Karp’s algorithm
with other classical algorithms, can be found in [9].

The purpose of this paper is to describe a very different algo-
rithm, which seems more efficient, in practice.

We will show how the specialization to the max-plus case
of Howard’s multichain policy improvement algorithm (see
e.g. [10], or [23] for a survey), which is well known in stochas-
tic control, runs in time5 w�x ou%'ta+ and space oE%pYC+ , where wyx is
the number of iterations of the algorithm. Although w5x , which
depends on both Y and the numerical values of the entries of 9 ,
seems difficult to evaluate, its average value is small (experimen-
tal tests on full matrices suggest wzx � oE%_{=|U}~YC+?+ .

In other words, it seems experimentally possible to solve in an
almost linear (i.e. almost oE%'ta+ ) average time a family of com-
binatorial problems for which the best standard algorithms run
in oE%pY�r�ta+ time.

We conjecture that the worst case value of the number of iter-
ations w x is polynomial in t . Examples show that it is at least
of order Y .

The max-plus version of Howard’s algorithm outperforms
other known methods with good average execution time, such
as linear programming. The only other fast method known to us
is Cuninghame-Green and Yixun’s algorithm [8], which runs in
time wz�C� oE%'tz+ , where the average value of the number of iter-
ations wz�C� is experimentally oE%'Y���� �W+ for full matrices, accord-
ing to [8].
�
Irreducibility is defined in

�
III below.�

Throughout the paper, “time” and “space” refer to the execution time (on a
sequential machine) and to the memory space required by the algorithm, respec-
tively.�

The natural implementation of Karp’s algorithm, described in [20], needs���=� �,�
space. However, it is easy to design a two passes variant, which needs

a double time, and runs in only
���=� �

space. As detailed in [9], it is also possible
to optimize Karp’s algorithm using the sometimes sparse character of the matrix
that it builds.�

The family of Howard’s algorithms works only for “non-degenerate” matri-
ces with at least one non- � entry per row. For such matrices,

���d�
, and���=� �&� ���=���M� �

.



2

Some parts of the present work were initiated in [3], and de-
veloped in a different direction in [4, 12]. It is remarkable that
Howard’s policy improvement scheme not only provides effi-
cient algorithms, but also simple existence proofs. In particular,
the existence of generalized eigenmodes for max-plus linear dy-
namical systems with several incommensurable delays, which is
stated in v III below, seems new. A similar proof technique was
applied to min-max functions in [12].

The paper is organized as follows.
In section II, we motivate the max-plus spectral problems, by

showing how familiar problems in Discrete Event Systems the-
ory and Operations Research reduce to the spectral problem (1),
and to some of its extensions.

In section III, we briefly recall the very classical character-
ization of eigenvalues of max-plus matrices. We discuss their
relation with cycle time vectors, which govern the asymptotic
behavior of max-plus linear dynamical systems. We show how
these cycle times can by computed from generalized eigen-
modes, which are a non classical useful extension of the notion
of eigenvector, already used in [12].

In section IV, we describe the max-plus version of Howard’s
policy iteration algorithm, which computes generalized eigen-
modes, and which in fact shows that such eigenmodes exist.
The only noticeable originality, by comparison with the classi-
cal stochastic control case, is that a value determination step can
be performed in time oE%'YC+ , using a special graph exploration al-
gorithm that we present in detail.

In section V, illustrativeexamples and systematical numerical
tests are presented.

A small prototype, written in C, which implements the max-
plus policy iteration algorithm described here can be found cur-
rently on the web page http://amadeus.inria.fr/gaubert. This pro-
totype will be integrated in the max-plus toolbox of SCILAB6

which is under development.

II. What the max-plus spectral theory can do for you

In this section, we list several basic problems that reduce to
the spectral problem (1) and to some of its extensions. Other
applications of the max-plus spectral problem can be found e.g.
in [22, 14], and in the references therein.

PROBLEM 1 (MAXIMAL CIRCUIT MEAN). Given a directed
graph7 � ��%��G(�� + , equipped with a valuation map �����
	 � ,
compute the maximal circuit mean

� � �"!�#�

���� � �a%��X+
 ��� � S ( (3)

where the �"!$# is taken over all the circuits � of � , and the sums
are taken over all the edges � of � .

The denominator of (3) is the length of circuit � . The numer-
ator is the valuation or weight of circuit � .�

A free open MATLAB-analogue software, developed at INRIA. The current
version of SCILAB (without the max-plus toolbox) can be found on http://www-
rocq.inria.fr/scilab.�

A (finite, directed) graph can be described by a finite set of nodes � and a set
of (oriented) edges ��������� . In the sequel, we will use the familiar notions
of (directed) path, (directed) circuit, etc., without further comments.

By Theorem III.1 below, when � is strongly connected,� coincides with the (unique) eigenvalue of matrix 9 :
%=�M��

�*+! uB" , defined as follows:

9 ` ^ �
# �a% Q (%$�+ if % Q (%$�+ :
� ,
1 %'�e��� + otherwise.

(4)

Conversely8, with any matrix 9 : %=� �>
?� +A@CB7@ , we will asso-
ciate the graph �'& with set of nodes � � �7S�(XVWVXV?(*Y[� and set
of edges �0�b�7% Q (($�+*) 9 ` ^,+�b1)� , equipped with the valua-
tion �a% Q (%$$+ � 9 ` ^ . This bijective correspondence between val-
ued graphs, on the one hand, and max-plus matrices, on the other
hand, will be used systematically in the sequel.

PROBLEM 2 (CYCLE TIME). Given a matrix 93:/%=� �>

� +J@OB @
with at least one finite entry per row, compute the cycle time vec-
tor -

%_9�+ � {�.=�/1032 S4�r�D[% 4 + ( (5)

where

D ` % 4 +8� �"!$#\*]T^$] @ %_9 `
^ -MD ^ % 4 �	SX+?+�( P S65 Q 5�Y8( P74 :98LK)�N6U�s(

(6)
and the initial condition D[%'6U+ :L�	@ is arbitrary.

Of course, (6) is nothing but a linear system in the max-plus
semiring:

D % 4 +>��9�D[% 4 � SX+,( P:4 :;8 K ��67� V (7)

In other words, the cycle time vector

-
% 9�+ determines the lin-

ear growth rate of the trajectories of the max-plus linear dynam-
ical system (7). The fact that

-
% 9�+ exists, that it is indepen-

dent9 of the initial condition D[%'6U+ :L�	@ , and that it can be com-
puted from the eigenvalues of the submatrices associated with
the strongly connected components of the graph of 9 , will be de-
tailed in Prop. III.2 below.

We next describe a useful generalization of the max-plus spec-
tral problem, which requires the definition of max-polynomials.
A (formal, generalized) max-polynomial in the indeterminate <
is simply a formal sum =�> �@?BADC > < > , where

C
is a map �FE�	

� �>

� (%G�H	 C > , such that
C > � 1 for all but finitely many values

of G�:2�IE . We denote by � �>
A� �J<�� the set of such polynomials.
The generalized spectral problem for a polynomial matrixK :s%=� �>

� �@<C�N+J@OB7@ can be written as:K %'FBL \ +?DE� D ( (8)M
Note that according to (4) and throughout the paper, there is an arc from N to O

if PRQ SUT� � . This “direct” convention, which is standard in combinatorial matrix
theory and automata theory, was already used in [14]. The “inverse” convention
(with PBS%QDT� � instead of PRQ SVT� � ) was used in [1]. This “inverse”conventionis
standardand preferable for discrete event system applications, unless one accepts
to deal with linear systems of the form W �YX � � W �YX�Z;[ � P , W �\X � being a row
vector, and P a square matrix, instead of the more familiar W �YX � � PDW �YX]Z^[ � ,W �\X � being a column vector. A consequence of the compromise made in this
paper (choosing the “direct” convention, while considering dynamical systems
of the second form) is that the accessibility relation, in Prop. III.2 and III.4 below,
is the inverse of the one used e.g. in [1, 18]._

If some entries of W �a` � are infinite, the limit in (5) need not exist, see e.g. [11,
Remark 1.1.10, Chap. VI] and [14, Th. 17]. The condition that all the entries ofW ��` � are finite, and that P has at least one finite entry per row (which guarantees
that P sends bdc to bdc , i.e. that the image by P of a column vector with finite
entries has finite entries) is frequently used since it seems practically relevant for
discrete event systems and makes life simpler.
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where DR:/%=� �>
A� +A@5Ky�N1)� , F :R� , and
K %'F L \ + :/%=� �>

� +J@OB @

denotes the matrix obtained by replacing each occurrence of the
indeterminate < by F L \ ( � ��F , with the usual notation) in the
formal expression of

K
. If

K � = > �@? A 9 > < > , with 9 > :
%=�M��

�,+A@CB7@ , the spectral problem (8) can be rewritten more ex-
plicitly as �

> �@? A 9 > F L > DE�GD3( (9)

where the sum is indeed a finite one, since 9 > is 1 for all but
finitely many values of G . When

K �/9U< , (9) specializes to (1).
For this reason, we will call D a generalized eigenvector of

K
and

F a generalized eigenvalue.
The appropriate graphical object to be associated with a poly-

nomial matrix
K : %=�	��

���J<C��+ @OB @ is not a valued directed

graph, but the bi-valued directed multigraph10 ��� , with set of
nodes � � �7S�(XVWVXV?(*Y[� , set of edges �R� �T% Q (%GW(($�+ : � r��FEur� )a% 9 > +J` ^ +� 1)� , initial node map In % Q (%GW(%$$+8� Q , terminal node
map Out % Q (%GW(($�+�� $ , first valuation � �6�z% Q ((GW(%$�+"�;%_9 > +J` ^ ,
and second valuation � ���C% Q (%GW(($�+5� G . Then, the generalized
spectral problem (8) becomes
POQ : �G( D&` � �"!$#� `�� > � ^	� ��
 %!�a% Q (%GW(($�+[� F r��C% Q (%GW(%$$+C-�D ^ +RV

(10)
We will see in Theorem III.3 that the solution F of (10) (which

is unique under natural conditions) yields the solution ��
 of the
following problem.

PROBLEM 3 (MAXIMAL CIRCUIT MEAN 
 ). Given a multi-
graph � � %Y�G( � ( In ( Out+ , equipped with two valuations� � � 	 � , � � � 	 �IE , such that


 ��� � �C%��X+�� 6 , for
all circuits � of � , compute the (generalized) maximal circuit
mean: � 
 ���"!$#�


 ��� � �a%!�W+
 ��� � �C%��X+ ( (11)

where the �"!$# is taken over all the circuits � of � .

As shown in Prop. III.4 below, the generalized spectral prob-
lem (8) is also useful in the effective computation of cycle times
of some max-plus linear dynamical systems, that are infinite di-
mensional (multi-delay) versions of (7).

We will say that
K � =,> �@? A 9 > < > : %=� �>

� �J<C��+A@OB @ is a

good polynomial matrix if it has at least one non- 1 entry per row,
and if there are no circuits in the graph of 9 � .
PROBLEM 4 (CYCLE TIME 
 ). Given a good polynomial matrixK :s%=�5�>

�,�@<C�N+J@OB7@ , compute the cycle time vector-

% K +>�;{�. �/10�2 S4 r�D % 4 +�( (12)

where the trajectory D is now given by the dynamics

D `Z% 4 +>�;�"!$#\*]T^$] @ ��!�#> �@? A %?%_9 > +A` ^ -�D ^ % 4 � GZ+?+,( P:4�� 6G( (13)

and %'D % 4 +?+ ��� /�� L���� is a given (bounded) initial condition, with�
� ���"!�# � G :L�IE ) 9 > +�G1)� .n��

Loosely speaking, a multigraph is a graph in which several edges can link the
same pair of nodes. Formally, a (finite) multigraph can be defined by a (finite)
set of nodes � , a (finite) set of edges � , and two maps In ��� ��� and Out ��!� � , which give the initial node and terminal node of an edge, respectively.

More algebraically, (13) can be rewritten as follows:

D[% 4 +8� �> �@?BA 9 > D[% 4 � GZ+,( P:4"� 6/V (14)

Remark II.1. Problems 4 and 2 are in fact two special versions of a
more general problem (see e.g. [19]). If # is a normed vector space and$�% #'&(# is a non-expansive map (i.e. ) $�*�+-,�.�$�*0/�, )213) +4.�/ ) ),
the limit 5 *0$-,�687:9<;>=@?BABC"DE$

= *�+-,
, if it exists, is independent of the

initial point
+

. Problem 2 deals with the case when # is equal to F c ,
equipped with the sup norm, and

$�*�+-,26HG2+
. In Problem 4, # is the

set of bounded functions from I .�J �BKML , to F c , equipped with the sup
norm, and

$
is the evolution operator which with the piece of trajectoryN +O*�CP,MQ�R-S
�UT
=�V � (initial condition), associates the trajectory obtained

after one unit of time:
N +�*�CXWY?B,MQZR-S

�UT
=�V � . The evolution operator is

obviously well definedsince there are no circuits in the graph of
G � . It is

clearly monotone and homogeneous, hence, by a simple result [5], it is
non-expansive for the sup-norm. Thus, the existence of the limit (12)
for a particular bounded function

N +�*�C[,MQ\R-S
�UT
=�V � , implies the exis-

tence of 5 *0$-, , which is equal to 5 *^]_, . Conversely, the existence of5 *0$-, clearly implies that the limit (12) exists, with 5 *^]_,`6 5 *0$a, .
III. Some classical and less classical elements of max-plus

spectral theory

In all this section, with a matrix 9 :s%=� �>

� +J@OB @ we associate
the graph � & � %��G(�� + , equipped with the valuation � , as de-
fined in the discussion following Eqn 4. The strongly connected
components of the graph of 9 are called classes. A matrix is ir-
reducible if its graph is strongly connected, i.e. if it has a single
class. The following result is classical [24, 26, 6, 15, 16]. See
e.g. [1, 7] for recent presentations and proofs.

THEOREM III.1 (MAX-PLUS SPECTRAL THEOREM). An irre-
ducible matrix 9 :�%I�E�>
J� +J@OB @ has a unique eigenvalue, given
by (3).

In general, there are several non-proportional eigenvectors
(see e.g. [1] or [14]). A reducible matrix 9 has in general sev-
eral distinct eigenvalues, and the maximal circuit mean (3) yields
precisely the maximal eigenvalue (see e.g. [11, Ch.IV], [14], [2]
for characterizations of the spectrum of reducible matrices).

We say that
Q

has access to $ if there is a path from
Q

to $ in
the graph of 9 . We say that

Q
has access to a class b if it has

access to any $�:cb (this property is obviously independent of
the choice of $5:db , by definition of a class). By “eigenvalue of
a class b ”, we mean the eigenvalue of the b3reb submatrix of
9 , which is unique by Theorem III.1.

The following result appeared in [18, Prop. 7], and, in a
stochastic context, in [1, Th. 7.36].

PROPOSITION III.2 (CYCLE TIME FORMULA). Let 9 :
%=� ��

� +A@OB @ , with at least one finite entry per row. The

Q
-th entry-

`*%_9�+ of the cycle time vector is equal to the maximum of the
eigenvalues of the classes to which

Q
has access � .

The next statement uses the correspondence between polyno-
mial matrices and multigraphs, described in v II above. We will
say that a polynomial matrix

K
is irreducible if its multigraph

is strongly connected. More generally, we will naturally extend
the notions of accessibility, classes, etc. to polynomial matrices
(these notions are defined as in the case of ordinary matrices, but
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replacing the graph �'& by the multigraph �_� ). The following
result is taken from [1, Th. 3.28]

THEOREM III.3 (SPECTRAL THEOREM 
 ). An irreducible
polynomial matrix

K � = > �@?BA 9 > < > : %I� �>

� �@<C�N+J@OB @ ,
such that the graph of 9 � has no circuits11, admits a unique
generalized eigenvalue F , given by (11).

The following extension of Prop. III.2 is immediate.

PROPOSITION III.4 (CYCLE TIME FORMULA 
 ). Let
K

denote
a good polynomial matrix. The

Q
-th entry

-
`*% K + of the cycle time

vector is equal to the maximum of the generalized eigenvalues of
the classes to which

Q
has access � .

Since the decomposition of a directed graph or multigraph in
strongly connected components can be done in linear time us-
ing Tarjan’s algorithm [25], Prop. III.2 and Prop. III.4 reduce in
linear time the computation of the cycle time vector to the com-
putation of the (possibly generalized) eigenvalues of irreducible
(possibly polynomial)matrices. In particular, the traditionalway
to compute the cycle time vector

-
%_9�+ is to compute the eigen-

values of the classes of 9 via Karp’s algorithm [20], and then
to apply Prop. III.2. This method does not work for the gen-
eralized dynamics (13), since Karp’s algorithm cannot compute
generalized eigenvalues. There are two traditional ways to over-
come this difficulty. — When 9 > is zero except for integer val-
ues of G , an elimination of the implicit part and a familiar aug-
mentation of state reduces the generalized spectral problem forK

to an ordinary spectral problem for a larger matrix 9 
 . This
method, which is presented in [1, v 2.5.3, v 2.5.4], is not so ex-
pensive when the number of values of G for which 9 > +�b1 is
small, particularly if it is implemented with some refinements, as
in [13], for

K �/9 � �R9 \ < . — The second method relies on the
general techniques presented in [17, Appendix V], which allow
one to maximize in pseudo-polynomial time a ratio of the form�a%!�,+����C%���+ for � in a finite set � , provided that for any value of
F :�� , we know how to maximize in polynomial time the ratio�a%!�,+[��FO��%��,+ for � in the same set � .

We will not discuss in detail these two more or less classical
approaches, but rather show how a different generalization of the
spectral problem allows us to determine directly and in full gen-
erality cycle time vectors. All the remaining part of this paper,
and in particular, the max-plus version of Howard’s policy im-
provement algorithm, will be based on this new spectral prob-
lem.

We consider a good polynomial matrix
K

. We say that
%��)(*D + : %I�5@�+�� is a generalized eigenmode12 if there exists
nAn

In [1, Th. 3.28], it is only required that the circuits of the graph of P � have
negative weights. We will not need this degree of generality here. In terms of the
associated dynamical systems (13), the condition of the theorem simply means
that there are no circuits involving zero-delay causality relations.n_�

This spectral notion is obtained by two successive generalizations of or-
dinary spectral problems. The first generalization consists in replacing ordi-
nary dynamical systems of the form (7) (with unitary delays) by systems of the
form (14) (with multiple delays). The ordinary spectral problem (1) and its gen-
eralization (9) are obtained by looking for solutions of the form W �YX �>��� = W ,
where
�

is a scalar and W	� � b�

��� � c���� `�� . But the definition of cycle-time
vectors requires W to have finite coordinates. Then, in the general case, a sim-
ple affine regime W �\X ����� = W � X � � ����������������� � W need not exist, but
a more general affine regime W �\X � ��� = W , where

�
is a diagonal matrix, is

expected. In other words, we expect the different entries of W �\X � to have dif-

� :2� such that4 :L��( 4�� � � ! / DE� K % ! L \ + ! / D3( (15)

where
! def� diag %�� \ (WVXVXVZ("� @ + and

! / � diag % 4 r#� \ (XVWVXV*( 4 r
� @ + .

When
K ��96< , (15) becomes4 :2�"( 4"� �$� ! / DE�/9 ! / L \ D3V (16)

That is, the action of 9 coincides with the action of
!

on the
orbit � ! / D�� /�� � L \ . As detailed in footnote 12, the eigenmode
equation (15) is obtained by looking for an ultimately affine so-
lution of (13), D % 4 +E� ! / D/� 4 r%�5- D . If such a solution
exists,

-
% K +5� {�.=� / \/ rsD % 4 +M�&� . The next lemma follows

readily from this observation, and from the fact, mentioned in
Remark II.1 above, that the limit {a.=� / \/ r	D[% 4 + ��� is indepen-
dent of the particular bounded initial condition.

LEMMA III.5. If a good polynomialmatrix
K

has a generalized
eigenmode %��)(ZD)+ , then

-
% K +>�'� .

In particular, if
K

is irreducible, Prop. III.4 implies that ���-
% K +�� %pF (XVWVXV*(ZF)+ , where F is the generalized eigenvalue ofK
. Therefore, (15) reduces to the (generalized) spectral prob-

lem (8), and D is a (generalized) eigenvector of
K

. I.e., for irre-
ducible matrices, finding generalized eigenmodes is equivalent
to finding generalized eigenvectors.

The existence of generalized eigenmodes was proved in [12]
when

K ��96< , as a special case of a more general result for min-
max functions. In the next section, we will show how the max-
plus version of Howard’s policy improvement algorithm allows
us to compute generalized eigenmodes. In particular, the termi-
nation of the algorithm will prove the existence of such eigen-
modes, for good polynomial matrices.

IV. The max-plus policy improvement algorithm

In this section,
K

will be a good polynomial matrix. We
will use systematically the multigraph �4� � %Y�G( � ( In ( Out+
equipped with the valuations �a( � , canonically associated withK

in v II.
It can be checked that the eigenmode equation (15) which

seems deceivingly to involve an infinite number of conditions,
is equivalent to the following finite system:

��` � �"!$#� `�� > � ^ � ��
 � ^ (17)

D `c� �"!$#� `�� > � ^ � � 
 %��z% Q ((GW(%$$+�� �C% Q (%GW(%$$+ r(� ^ -�D ^ +R( (18)

where ��� �7% Q ((GW(%$$+ :9� ))� ` �*� ^ ��V
In loose terms, the multichain policy iteration algorithm will
solve this system by trying to guess the arcs that attain the max-
imum. A precise statement of this idea needs the definition of

ferent (linear) growth rates, given by the diagonal entries of
�

. Hence, the sec-
ond generalization consists in substituting W �YX � �+� = W for

X
large enough (i.e.X-,(./�+. � ) in (14): then, one obtains precisely the generalized eigenmode

equation (15). Contrary to the case when
���/�

,
� R n

need not commute with
the matrices P10 , and thus, the relation W �32 � � R nJ� W � = 05476 A P�0 � R 0 W
need not imply that

� = W �82 � � R n?�9� = W , for
X:, `

. This is why (15) has to
be stated for all large

X
.
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policy, which is a map

� �@� 	 �~( such that In % � % Q +?+ � Q ( POQ : � V
That is, a policy is just a map which with a node associates an
edge starting from this node.

With a policy � , we associate the special polynomial matrixK�� � = > �@? A 9 �> < > :
% 9 �> +J` ^ � � �z% � % Q +?+ if $y� Out % � % Q +?+ and G��'�C% � % Q +?+

1 otherwise.

Hence, the matrix
K��

has exactly one non-zero entry per row,
which corresponds to the edge selected by � , i.e. in the multi-
graph of

K��
, � % Q + is the unique edge starting from

Q
. It has

the same valuations � and � as in the original multigraph of
K

.
E.g., we have depicted in Fig. 2 below the multigraph (in fact,
the graph) of

K ���
, where � \ is the policy S*	 SU( Q 	 � , forQ �	�&(�
&(
� and

K ��96< , where 9 is displayed in Fig. 1.
We first show how a generalized eigenmode %��)(ZD)+ of a matrix

of the form
K��

can be computed in time ou%'YC+ .
ALGORITHM IV.1 (VALUE DETERMINATION). Input: a good
polynomial matrix

K
and a policy � . Output: a generalized

eigenmode of
K��

.

1. Find a circuit � in the multigraph of
K��

2. Set

�M�

 ��� � �a%��X+
 ��� � �C%!�W+ V (19)

3. Select an arbitrary node
Q

in � , set � ` � � and set D ` to
an arbitrary value, say D ` � 6 .
4. Visiting all the nodes $ that have access to

Q
in backward

topological order, set

� ^ � � (20)

D ^ � �z% � %Y$$+
+>� �Er �C% � %�$�+?+ -�D Out
� � � ^	��� (21)

5. If there is a nonempty set b of nodes $ that do not have
access to

Q
, repeat the algorithm using the b�r b submatrix

of
K

and the restriction of � to b .

The algorithm should be specified as follows.
Step 1 is very easy to implement: we can start from an ar-

bitrary node
Q
, move to node $ � Out % � % Q +?+ , then possibly to

node Out % � %Y$$+
+ , etc., until a node that is already visited is found.
Then, a circuit has been found. This requires a linear time.

Eqn (21) requires visiting the nodes in backward topological
order, starting from

Q
, since the value of D Out

� � � ^	��� must be al-
ready fixed when we visit node $ and set D ^ . This complete visit
can be done in linear time, at the price of an a priori tabulation of
the (multi-valued)-inverseof the map � 	 �G(D$'H	 Out % � %Y$$+
+ .
Computing the inverse of this map also requires a linear time.
The handling of this inverse is in fact the only part of the algo-
rithm which requires more refined data types than simple arrays
(in our implementation, we used linearly chained lists).

Step 5 is formulated in a recursive way only to simplify the
statement of the algorithm, which is essentially non recursive.

The above considerations justify the following theorem.

THEOREM IV.2. Algorithm IV.1 computes a generalized eigen-
mode of

K��
in time and space oE%pYC+ .

The second ingredient of Howard’s algorithm is a policy im-
provement routine, which given a policy � and a generalized
eigenmode %��)(*D + of

K��
, either finds a new policy �`
 such that-

% K���� + � -
% K�� + , or proves that %��)(ZD)+ is a generalized eigen-

mode of
K

.

ALGORITHM IV.3 (POLICY IMPROVEMENT). Input: a good
polynomial matrix

K
, a policy � , together with a general-

ized eigenmode %��)(*D + of
K��

. Output: a policy � 
 , such that-
% K�� � + � - % K�� + .

1. Let13

� � � Q );�"!$#� `�� > � ^ � ��
 � ^ � �$`A�� % Q + � !��?}>��!�#� `�� > � ^	� ��
 � ^ ( for
Q � S>VXVXV Y ,

� � � Q ) �"!�#��� � `�� > � ^	� � � � ` � %!�a%!�W+�� �C%!�W+�� ^ -�D ^ + � D ` �� % Q + � !��
}>�"!$#�
� � `�� > � ^ � � � � ` � %��z%��X+8� �C%��X+�� ^ - D ^ +�(
for
Q � S VWVXVAY .

2. If
� � � ��� , %��)(*D + is a generalized eigenmode of

K
.

Stop.
3. (a) If

� +�	� , we set:

� 
 % Q + �
#

any � in
� % Q + if

Q : � ,� % Q + if
Q +: � .

(b) If
� �	� but

� +��� , we set

� 
 % Q + �
#

any ��: � % Q + if
Q : � ,� % Q + if
Q +: � .

The policy improvement rules 3a and 3b simply mean that
one selects for the new policy the edges which realize the maxi-
mum in Eqns (17), (18). This maximum is taken hierarchically:
Eqn (17) has priority on Eqn (18) in a policy improvement step.
Only when Eqn (17) is satisfied Eqn (18) is used to determine the
new policy. The other conditions in steps 3a and 3b simply mean
that the preceding values of � should be kept in � 
 , whenever
possible. These technical tricks will guarantee the termination
of the policy iteration algorithm below, even when “degenerate”
policy improvements in which

-
% K�� � +8� - % K�� + occur.

The sets
� % Q + and

� % Q + , which are introduced to simplify
the statement of the algorithm, need not be explicitly tabulated.
Clearly, Algorithm IV.3 runs in oE% ) ��) + time14 and oE%pYC+ space15

We next state the max-plus version of Howard’s policy itera-
tion algorithm.

ALGORITHM IV.4 (MAX-PLUS POLICY ITERATION). Input:
a good polynomial matrix

K
. Output: a generalized eigenmode

of
K

.

1. Initialization. Select an arbitrary policy � \ . Com-
pute a generalized eigenmode %�� \ (*D \ + of

K�� �
, using Algo-

rithm IV.1. Set
4 ��S .n_�

Recall that by ����� �!�#"#$ 4&%(' �*) � , we mean as usual the set of elements +��� such that ' � + �&� �!�#" $ 4&% ' �,) � .n_�.- � - simply denotes the number of edges of the multigraph.n_�
The algorithm needs less internal memory (

���=� �
space) than the coding of

the input itself, which requires
��� - � - � space.
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2. Policy improvement. Improve the policy � / , using Al-
gorithm IV.3 with input � � � / ("�s�&� / (*D�� D / . If the
stopping condition of Algorithm IV.3 is satisfied, %�� / (*D / +
is a generalized eigenmode of

K
. Stop. Otherwise, set� / E \ � ��
 (the output of Algorithm IV.3).

3. Value determination. Find a generalized eigenmode
%�� / E \ (ZD / E \ + of

K���� A �
using Algorithm IV.1, taking the

special value D / E \` �GD /` in step 3,IV.1.
4. Increment

4
by one and go to step 2.

The algorithm builds a sequence of generalized eigenmodes
%�� / (ZD / + that is strictly increasing for the lexicographic order on
%=�M@�+�� , defined by %'D[( � +�� lex %pD 
 ( ��
 + if D�� D 
 or D �
D 
 and � � �Z
 . The fact that D / E \` must be set to D /` in step 3
of Algorithm IV.1 is a conservative trick analogous to the fact
that the values of � are kept in �`
 whenever possible, in Algo-
rithm IV.3. This technical condition is essential to guarantee the
strict monotonicity of the sequence %�� / (ZD / + , which is needed in
the proof that the algorithm terminates.

The proof of the following result is similar to the proof of the
main theorem of [10]. It relies essentially on a version of the
maximum principle for transient Markov chains. A more alge-
braic version of this proof, using germs of affine functions, ap-
pears in [4], and in the proof of the results announced therein.

THEOREM IV.5. The max-plus policy iteration algorithm ter-
minates in a number of iterations wzx which is less than the num-
ber of policies. One iteration requires

\�� ou% ) ��) + time. The algo-
rithm requires oE%pYC+ space

\	�
.

Indeed, the same policy is never selected twice. Bounding w x
by the number of policies which is finite but exponential is very
coarse. On experimental random examples, w x is very small, as
detailed in section V below. The followingresult is an immediate
consequence of the termination of the policy iteration algorithm
and of Lemma III.5.

COROLLARY IV.6. A good polynomial matrix
K

has a gener-
alized eigenmode %��)(*D + . In particular, the cycle time

-
% K + ���

exists.

Remark IV.7. Howard’s algorithm is not limited to spectral problems.
It is possible to design policy iteration algorithms for fixed points equa-
tions of the form

+ 6eG2+�

�
, where

G
is a square matrix with maximal

eigenvalue strictly less than � , and
�

a column vector. This will be de-
tailed elsewhere.

V. Examples and numerical tests

A. Illustrative example

We apply the max-plus policy iteration algorithm to determine
the eigenvalue of the matrix displayed in Fig. 1. This corre-
sponds to the case where

K � 9U< , and ��� S . In particular,
the multigraph of

K
will be identified with the graph of 9 .

1

3

4

8

21
2

7
2

3

5

43

P �
�� [�� � ������ ���� ���� ��� �

��

Fig. 1. A matrix and its graph

The following run of the algorithm is visualized in Fig. 2. We
choose the initial policy � \ : S 	 S , Q 	 � , for

Q � � ( 
 (�� .
Applying Algorithm IV.1, we find a first circuit � \ �&S 	 S , with
��� �a%!� \ +��\�C%!� \ + � S . We set � \\ � S , D \\ �36 . Since S is the
only node which has access to S , we apply Algorithm IV.1 to the
subgraph of � � with nodes �&(�
&(
� . We find the circuit � � � ��	 �
and set �G� �z%�� � +����C%�� � +�� 
 , � \� � 
 and D \� � 6 . Since
&(
� have access to � , we set � \` � 
 for

Q � 
 (�� . Moreover, an
application of (21) yields D \q � ��� 
>-RD \� , D

\� �	� � 
>-RD \� . To
summarize:

� \ � �ES 
 
 
"!	#�( D \ �$�a6 6 S �aS%!&#cV
We improve the policy using Algorithm IV.3. Since

� � �TS�� +�� , we have a type 3a improvement. This yields � � � Q 	 � , forQ �3S�(��&(�
&(
� . Only the entry S of D \ and � \ has to be modified,
which yields

� � � � 
 
 
 
 ! #"(sD � � � �aS 6 S �aS ! # V
We next tabulate with less details the end of the run of the algo-
rithm. Algorithm IV.3, type 3b policy improvement. � q ��S9	� (���	 
&(�
F	 � (��F	 
 . Algorithm IV.1. Value determination.
Circuit found, �9� 
9	 �9	 
 , �f� %��z%�� ( 
U+ -��a%�
 ( �U+?+�� �L�' � � .

� q �$�)(� ( � (� (� !*#"(fD q � � \Z\� 6 � \� 
+!*# V
Algorithm IV.3, type 3b policy improvement. The only change is� � %�
U+>� � . Algorithm IV.1. Value determination. Circuit found,�U� 
 	 ��	 
 , �a��%��z%�
&(
�T+C- �a% � (�
�+?+�� � � SUS�� � .

� � �$� \*\� \*\
�
\Z\
�
\Z\
� !*#"(sD � �,� � � \� 6

�
� !*# V

Algorithm IV.3. Stop. SUS�� � is an eigenvalue of 9 , and D � is an
eigenvector.
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Fig. 2. The sequence of policies built by the max-plus policy iteration
algorithm, for the matrix

G
displayed in Fig. 1. The valuations of

the nodes indicate the vectors
+ =

,
C_6�?65&5&5 K�7 .

B. Numerical Tests

The results of the numerical experiments displayed in
Fig. 3,4,5 should be self-explanatory.



7

0

20

40

60

0 200 400 600 800 1000 1200 1400

Fig. 3. Number of iterations ��� of Howard’s algorithm as a function
of the dimension, for full random matrices, with i.i.d entries dis-
tributed uniformly on an interval.
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Fig. 4. Cpu time (in sec.) of Howard’s algorithm (in red) vs Karp’s
algorithm (in black) on a pentium 200Mhz with 500Mb of RAM,
as a function of the number of arcs for full random matrices (same
probabilistic characteristics as in Fig. 3).

References
[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization and

Linearity. Wiley, 1992.

[2] R.B. Bapat, D. Stanford, and P. van den Driessche. Pattern properties and
spectral inequalities in max algebra. SIAM Journal of Matrix Analysis and
Applications, 16(3):964–976, 1995.

[3] J. Cochet-Terrasson. Étude et mise en œuvre de l algorithme de Howard
sous des hypothèses faibles d’accessibilité. Rapport de stage, ENSTA et
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