Efficient Algorithms for Optimum Cycle Mean and Optimum Cost to Time Ratio

Problems

Ali Dasdan

Dept. of Computer Science
University of lllinois, Urbana, IL. 61801
dasdan@cs.uiuc.edu

Abstract

The goal of this paper is to identify the most efficient al-
gorithms for the optimum mean cycle and optimum cost
to time ratio problems and compare them with the popu-
lar ones in the CAD community. These problems have nu-
merous important applications in CAD, graph theory, dis-
crete event system theory, and manufacturing systems. In
particular, they are fundamental to the performance anal-
ysis of digital systems such as synchronous, asynchronous,
dataflow, and embedded real-time systems. For instance,
algorithms for these problems are used to compute the cycle
period of any cyclic digital system. Without loss of gen-
erality, we discuss these algorithms in the context of the
minimum mean cycle problem (MCMP). We performed a
comprehensive experimental study of ten leading algorithms
for MCMP. We programmed these algorithms uniformly and
efficiently. We systematically compared them on a test suite
composed of random graphs as well as benchmark circuits.
Above all, our results provide important insight into the per-
formance of these algorithms in practice. One of the most
surprising results of this paper is that Howard’s algorithm,
known primarily in the stochastic control community, is by
far the fastest algorithm on our test suite although the only
known bound on its running time is exponential. We provide
two stronger bounds on its running time.

1 Introduction

Consider a digraph G = (V, E) with n nodes and m arcs.
Associate with each arc e in E two numbers: a weight (or
cost) w(e) and a transit time ¢(e). The weight and tran-
sit time of a path in G is equal to the sum of the weights
and transit times of the arcs on the path, respectively. The
length of a path is equal to the number of arcs on the path.
Let w(C), t(C), and |C| denote the weight, transit time, and
length of a cycle C in G.
The (cycle) ratio p(C') and the (cycle) mean A(C) of cycle
C are defined as
plC) = H 10y > 0, and a0y = 0,

Published in Proc.  36th Design Automation Conf.

(DAC), pp. 37-42, Jun. 1999.

Sandy S. Irani and Rajesh K. Gupta

Dept. of Information and Computer Science
University of California, Irvine, CA 92697
{irani,rgupta}@ics.uci.edu

respectively. Note that p(C) gives the average weight per
transit time, and A(C) gives the average arc weight on C.
The cycle ratio is historically called the cost to time ratio.
The mean of C is a special case of its ratio in that its mean
is obtained from its ratio by setting the transit time of every
arc on C to unity.

The minimum cycle ratio (MCR) p* and the minimum

cycle mean (MCM) A* of G are defined as

p-=min{p(C)} and A" = min{A(C)},

respectively. In both cases, C' ranges over all the cycles in
(. The respective problems are called the menimum cycle
ratio problem (MCRP) and the minimum mean cycle prob-
lem (MCMP)'. The definitions of the maximum versions of
both of these problems are analogous.

1.1 Applications in CAD
The applications of both MCRP and MCMP are important

and numerous. See [12] for the applications in graph the-
ory. Our focus is on the applications in the CAD of digital
systems. These problems have fundamental importance to
the performance analysis of discrete event systems [3], which
can also model digital systems. These problems are appli-
cable to the performance analysis of such digital systems as
synchronous [23], asynchronous [4], DSP [14], or embedded
real-time [18]. Simply put, the algorithms for these problems
are essential tools to find the cycle period of a given cyclic
discrete event system. Once determined, the cycle period
is used to describe the behavior of the system analytically
over an infinite time period. For instance, the algorithms
for these problems are used to compute the iteration bound
of a dataflow graph [14], the time separation between event
occurrences in a cyclic event graph [13], and the optimal
clock schedules for circuits [22].

1.2 Related work

There are many algorithms proposed for both MCRP and
MCMP. We give a comprehensive classification of the fastest
and the most common ones in Table 1. References to a few
old algorithms can be found in [12]. Note that as MCMP is
a special case of MCRP, any algorithm for the latter prob-
lem can be used to solve the former problem. Conversely,
it is also possible to solve MCRP using an algorithm for

Twe intentionally use MCMP to refer to “the minimum mean cycle
problem”.



Table 1: Minimum mean cycle and minimum cost to time ratio algorithms for a graph G with » nodes and m
arcs. (W, the maximum arc weight; T, the total transit time of G; N is the product of the out-degrees of all

the nodes in G.)

Minimum mean cycle algorithms

[ [ Name Source [ Year [  Running time Result Complexity
1 | DG Dasdan & Gupta [8] 1997 | O(nm) Exact Polynomial
2 | HO Hartmann & Orlin [12] 1993 | O(nm) Exact Polynomial
3 | Karp’s Karp [15] 1978 | ®©(nm) Exact Polynomial
4 Hartmann & Orlin [12] 1993 | O(nm + n°lgn) Exact Polynomial
5 | YTO Young, Tarjan, & Orlin [25] 1991 | O(nm + n°lgn) Exact Polynomial
6 Karp & Orlin [16] 1981 @(ng) Exact Polynomial
7 | KO Karp & Orlin [16] 1981 | O(nmlgn) Exact Polynomial
8 [ OA1 Orlin & Ahuja [21] 1992 | O(y/nmlg(nW)) Approximate | Pseudopoly.
9 | OA2 Orlin & Ahuja [21] 1992 | O(v/nmlg?>(nW)) | Approximate | Pseudopoly.
10 Cuninghame-Green & Yixun [7] | 1996 | O(n?) Exact Polynomial

[ Minimum cost to time ratio algorithms
[ [ Name Source [ Year [  Running time Result Complexity
11 | Burns’ Burns [4] 1991 O(n2m) Exact Polynomial
12 Megiddo [19] 1979 O(n2m lgn) Exact Polynomial
13 Hartmann & Orlin [12] 1993 | O(Tm) Exact Pseudopoly.
14 | Lawler’s Lawler [17] 1976 | O(nmlg(nW)) Approximate | Pseudopoly.
15 Ito & Parhi [14] 1995 | O(Tm + T3) Exact Pseudopoly.
16 Gerez et al. [10] 1992 | O(Tm + 73 lgT) Approximate | Pseudopoly.
17 Gerez et al. [10] 1992 | O(Tm +T%) Exact Pseudopoly.
18 | Howard’s | Cochet-Terrasson et al. [6] 1997 | O(Nm) Exact Pseudopoly.

MCMP [11].
paper.

In Table 1, the polynomial and pseudopolynomial algo-
rithms are respectively ordered according to their worst-case
running times. Those with the same running time are pre-
sented in alphabetical order of their inventors’ names. Some
references are cited more than once because they contain
more than one algorithm. Some algorithms cannot produce
the exact MCM or MCR, in which case they are said to
return approximate results. The amount of error that can
be tolerated in the approximate results can usually be con-
trolled. This amount of error is denoted by ¢, and called the
precision of the algorithm.

Thus, we will focus only on MCMP in this

1.3 Motivations, contributions, and methodology

Our main goal in this paper is to identify the most efficient
algorithms for MCMP and MCRP and compare them with
the current practice in the CAD community for solving sim-
ilar problems. We have realized this goal with the following
motivations and contributions:

(1) Despite the importance of MCMP and MCRP, most
of the work in the CAD community that deals with these
problems are not aware of most of the algorithms in Ta-
ble 1. The most popular algorithms in the CAD commu-
nity are Karp’s algorithm [15], Lawler’s algorithm [17], and
to some extent, Burns’ algorithm [4]. We show that there
are far more efficient algorithms than these popular ones.
In particular, we show that Howard’s algorithm is signifi-
cantly faster than all the others. In addition, we provide an
improved version of this algorithm as well as two stronger
bounds on its running time.

(2) Most of the earlier work does not present any exper-
imental analysis of even the algorithms that they introduce.
There has not been a clear understanding of the performance
of any of the algorithms studied in this paper although the-
oretical bounds on their running times have been proven.
Finding more efficient implementation of these algorithms
is very important because their applications require that

they be run many times, e.g., see [8]. This paper is the first
study that systematically compares their performance and
provides a great deal of insight into their behavior. We also
provide some implementational improvements for most of
the algorithms.

In this study, we focus on the ten leading MCM algo-
rithms and the MCM versions of the MCR algorithms from
Table 1, all of which are named in the table. The remain-
ing algorithms in this table are not included in our study
because they are very similar to the chosen ones. We imple-
mented each algorithm in a uniform and efficient manner.
We tested them on a series of random graphs, obtained us-
ing one generator from [5], and real benchmark circuits, ob-
tained from logic synthesis benchmarks. The running time
as well as representative operation counts, as advocated in
[2], are measured and compared. We now give a review of
the these algorithms and then present the experimental re-
sults and our observations.

2 Minimum Mean Cycle Algorithms

We first give a different formulation of MCMP that is more
useful to explain the behavior of the minimum mean cycle
algorithms.

The minimum cycle mean A* of a graph G = (V, E) can
be defined as the optimum value of A in the following linear
program:

max A s.t. d(v) —d(u) < w(u,v) — A, V(u,v) € E, (1)

where d(v) is called the distance (or the node potential) of
v. The maximum is chosen over all values for d(-). When
the inequalities are all satisfied, d(v) is equal to the weight
of the shortest path from s to v in G when \* is subtracted
from every arc weight. The node s is arbitrarily chosen as
the source in advance. Let G denote the graph obtained
from G by subtracting A from the weight of every arc. The
minimum cycle mean A* is the largest value of A for which
G has no negative cycles.



We say that an arc (u,v) € E is criticalif d(v) — d(u) =
w(u,v) — A, which we refer to as the criticality criterion.
We say that a node is cretical if it is adjacent to a critical
arc, and that a graph is critical if all of its arcs are critical.
The critical subgraph of G 1+ contains all the minimum mean
cycles of GG, as implied by Equation 1. The critical subgraph
is important to compute because the critical subgraph of a
graph G contains all the arcs and nodes that determine the
performance of the system modeled by G. After running an
MCM or MCR algorithm on G, the critical subgraph of G
can easily be computed using its definition. As a result, we
present each algorithm in the context of computing A* only.

We assume that the input graph G to the algorithm in
context 1s cyclic and strongly connected. This assumption
simplifies most of the algorithms and generally improves
their running times in practice. Note that if G is not strongly
connected, 1ts minimum cycle mean can be found easily: first
partition G into its strongly connected components, run the
algorithm on each strongly connected component, and then
take as the minimum cycle mean of G the minimum of the
cycle means returned by the algorithm. This is the way we
implemented all of the algorithms.

We now review the minimum mean cycle algorithms in
our study. More detailed discussion of these algorithms to-
gether with their pseudocode is given in [9].

2.1 Burns’ algorithm

Burns’ algorithm [4] is actually the minimum mean cycle
version of the original Burns’ algorithm for MCRP. We have
discovered that the algorithm in [7] is identical to Burns’
algorithm. Burns’ algorithm is based on linear program-
ming. [t is an iterative algorithm constructed by apply-
ing the primal-dual method. It solves the above linear pro-
gram (Equation 1) and its dual simultaneously. In essence,
the behavior of Burns’ algorithm is very similar to that of
the parametric shortest path algorithms below such as the
KO algorithm: The KO algorithm improves upon an ini-
tial acyclic critical subgraph of G until the critical subgraph
becomes cyclic, at which point the minimum cycle mean is
found. Burns’ algorithm also operates on the critical sub-
graph and terminates when it becomes cyclic. It differs from
the KO algorithm in that at every iteration, it reconstructs
the critical subgraph from scratch.

2.2 Karp’s algorithm and its variants

Define Dy (v) to be the weight of the shortest path of length &
from s, the source, to v; if no such path exists, then Dy (v) =
+oo. Karp’s algorithm [15] is based on his observation that
* . Dyp(v)—D
A" =min max M,
vEV 0<k<n—1 n—k
which is called Karp’s theorem. Karp’s algorithm computes
each Dy (v) by the recurrence

Dy(v) = (quI%IelE{Dk_l(u) +w(u,v)}, k=1,2,...,n,

Dqo(s) =0,Dg(v) =400, v#s.

Note that d(v) and D(v) are related to each other by the
equation d(v) = ming<r<n—1{Dxr(v) — kA}. As observed in
[8, 12, 25], this recurrence, which is not computed recur-
sively, makes the best and worst cases of Karp’s algorithm
the same, which is why it runs in ©(nm).

We have three improvements on Karp’s algorithm: the
DG algorithm, the HO algorithm, and the Karp2 algorithm.

The DG algorithm [8] improves upon Karp’s algorithm by
eliminating unnecessary work introduced by the above re-
currence. [t works in a breadth-first manner in that starting
from the source, it visits the successors of nodes rather than
their predecessors, as done in the recurrence. This process
creates an unfolding of G, and when the algorithm is imple-
mented using linked lists, its running time becomes equal to
the size of the “unfolded” graph. Depending on the struc-
ture of G, the running time ranges from ©(m) to O(mn).

The HO algorithm [12] also improves upon Karp’s algo-
rithm. It helps to terminate Karp’s algorithm early with-
out changing its structure, i.e., it still uses the above re-
currence. It 1s based on the observation that many of the
shortest paths computed by Karp’s algorithm will contain
cycles. If one of these cycles is critical, then the minimum
cycle mean is found, which suffices to terminate the algo-
rithm. The HO algorithm essentially checks the critical-
ity of each cycle on the shortest paths computed. If the
early termination is not possible, this algorithm can add an
overhead of O(n® + mlgn) in total to the running time of
Karp’s algorithm although it does not change the running
time asymptotically.

The Karp2 algorithm is a space efficient version of Karp’s
algorithm?. Karp’s algorithm takes up ©(n?) space in order
to store the D-values. The Karp2 algorithm reduces this
space requirement to ©(n). The Karp?2 algorithm performs
two passes. In the first pass, it computes Dy,(v) for each
node v without storing Dy (v) for k < n. In the second pass,
it computes the fraction in Karp’s theorem as it computes
each Dy(v), k < n. The DG and HO algorithms also suffer
from this large space complexity problem. Fortunately, the
technique used in the Karp2 algorithm is also applicable to
these variants.

2.3 Parametric shortest path algorithms

The KO algorithm [16] and the YTO algorithm [25] are in
the category of parametric shortest path algorithms. The
YTO algorithm is essentially an efficient implementation of
the KO algorithm. These algorithms are based on the ob-
servation that the minimum cycle mean A* is the largest A
such that Gy does not have any negative cycles. Thus, these
algorithms start with A = —oo and always maintain a tree of
shortest paths to a source node s. These algorithms change
A incrementally so that the shortest path tree changes by
one arc in each iteration. When a cycle of weight zero is
detected in G, that cycle is the cycle with the minimum
mean.

2.4 Lawler’s algorithm

Lawler’s algorithm [17] is based on the same observation as
the parametric shortest path algorithms. It also uses the fact
that A* of G lies between the minimum and the maximum
arc weights in (. Lawler’s algorithm does a binary search
over the possible values of A* and checks for a negative cycle
in GG every iteration. If one is found, then the chosen A is
too large so it is decreased; if not, it is too small so it is
increased. Lawler’s algorithm terminates when the interval
for the possible values of \* becomes too small. The size of
that interval, €, determines the precision of the algorithm.

2Suggested by S. Gaubert of INRIA, France.



Input: A strongly connected digraph G = (V, E).
Output: The minimum cycle mean A* of G.

1 for each node v € V do d(u) — +o0

2 for each arc (u,v) € E do

3 if (w(u,v) < d(u)) then

4 d(u) — w(u,v); 7(u) — v /* 7 is the policy */

5 while (true) do /* Main loop - Iterate */

6 Ep—{(u,n(u)) € E} /* Find the set E, of policy arcs */

/* Compute A in the policy graph G, */
7  Examine every cycle in G = (V, E,).
8 Let C be the cycle with the smallest mean in G .
9 Let A — w(C)/|C|
10 Select an arbitrary node s € C.
/* Compute the node distances using the reverse BFS */
11 if (there is a path from v to s in G,) then
12 d(v) — d(n(v)) +w(v,7(v)) = A
/* Improve the node distances */
13 improved — false
14 for each arc (u,v) € E do
15 S(u) — d(u) — (dv) + w(u,v) — A)
16 if (6(u) > 0) then
17 if (6(u) > €) then improved — true
18 d(u) — d(v) + w(u,v) — X; 7(u) — v
/* If not much improvement in the node distances, exit */

19 if (NOT improved) then return A

Figure 1: An improved version of Howard’s mini-
mum mean cycle algorithm.

2.5 Howard’s Algorithm

An improved version of Howard’s algorithm [6] is given in
Figure 1. It is similar to the style of the parametric short-
est path algorithms except that it starts with a large A and
decreases A until the shortest paths in G\ are well defined.
It computes A on the policy graph which is simply a sub-
graph of G such that the out-degree of each node is exactly
one. Note that the policy graph has n arcs. For a given A,
the algorithm attempts to find the shortest paths from ev-
ery node to an chosen node s using the breadth-first search
(BFS) algorithm. In doing so, it either discovers that the
shortest paths are well defined in which case the correct A
has been found or it discovers a negative cycle in G'x. In the
latter case, the negative cycle has a smaller mean weight
than the current A. In this case, A can be updated to the
mean weight of the new cycle and the process continues.

The beauty of Howard’s algorithm is that each iteration
is extremely simple and requires only ©(m) time. Mean-
while, although it ensures that the value of A is non-increasing
from one iteration to another, it usually manages to make
significant progress in decreasing the value of A in a very few
number of iterations. In [9], we have proved that A decreases
by at least ¢/n at least every n iterations of the main loop
of Howard’s algorithm, where € is the precision of the algo-
rithm. This result leads to two stronger bounds on the run-
ning time of Howard’s algorithm: (1) its running time is at
most O(nma), where « is the number of simple cycles in G,
or (2) its running time is at most O(n2m(wm(w — Wimin)/€),
where wWimar and wWmin are the maximum and minimum arc
weights in G.

2.6 Scaling algorithms

The OA1 and OA2 algorithms [21] are in this category. They
assume that the arc weights are integers bounded by W. If
W is polynomial in n, then these algorithms are asymp-
totically the fastest algorithms. The OA2 algorithm applies
scaling to a hybrid version of an assignment algorithm, called
the auction algorithm, and the successive shortest path algo-
rithm. It uses an approximate binary search technique. The
OA1 algorithm is the same as the OA2 algorithm except that
it does not use the successive shortest path algorithm.

3 Experimental Framework

We programmed the algorithms in C+4++ using the LEDA
library version 3.4.1. This library is a template library for
efficient data types and algorithms [20]. In order to ensure
uniformity of implementation, all the algorithms were im-
plemented in the same style by one of us. We also flattened
each algorithm in that we manually inlined all the functions
other than the functions needed by the LEDA data types.
This eliminated the overhead of function invocations. The
total size of the programs is approximately 2700 lines of
C++ code.

We compiled and linked each program using the Sun
C++4 compiler CC version 3.0.1 under the O4 optimization
option. We conducted the experiments on a Sun Sparc 20
Model 512 with two CPUs, 64 MB of main memory, and
105 MB of swap space. The operating system was SunOS
version 5.5.1.

We did two sets of experiments: one to measure the run-
ning time of each algorithm and another to count the key
operations of each algorithm, as advocated in [2]. Our test
suite contained random graphs, generated using SPRAND [5],
and cyclic sequential multi-level logic benchmark circuits,
obtained from the 1991 Logic Synthesis and Optimization
Benchmarks [24]. SPRAND produces a graph with n nodes
and m arcs by first building a Hamiltonian cycle on the
nodes and then adding m — n arcs at random. This cycle
makes the graph strongly connected. We generated 10 ver-
sions of each random graph. The experimental data reported
for these graphs in this paper are the average over these 10
runs. The arc weights in the random graphs were uniformly
distributed in [1, 10000], which is the default weight inter-
val in SPRAND. Due to lack of space, we do not present the
experimental results for the benchmark circuits: they can
be found in [9].

The properties of the random graphs in our test suite
are given together with the running times in Tables 2. We
used sparse random graphs in our test suite because real
circuits are sparse and we wanted our random graphs to
represent them as closely as possible. We did more experi-
ments than were reported in this paper. However, since the
trend for the dependence of the performance on the graph
parameters is evident from the results that we included in
this paper, we did not see any need to include more exper-
imental results. When doing our experiments, we tried to
follow the guidelines in [1]. When comparing the algorithms
using their operation counts, we compared only the relevant
ones because all the algorithms do not have the same kind
of operations. For instance, we compared only the KO and
YTO algorithms for the number of heap operations.



4 Experimental Results and Observations

4.1 The minimum cycle mean and the graph parameters

For the random graphs, the minimum cycle mean is almost
independent of the number of nodes, and it changes inversely
with the density of the graph. This observation is expected
because as the density of a graph increases; the graph con-
tains more cycles and the critical cycles get smaller. This
simple observation will be used to explain the behavior of
some of the algorithms.

4.2 KO versus YTO

In our implementation, both algorithms use Fibonacci heaps,
which is the default heap data structure in LEDA. Since the
YTO algorithm is essentially an implementation of the KO
algorithm using Fibonacci heaps, their use in the YTO algo-
rithm was a natural choice. Their use in the KO algorithm
was preferred to make these two algorithms comparable.

From the experimental results reported in [9], we can see
that both the algorithms perform almost the same number
of iterations on each test case; however, the YTO algorithm
provides savings in the number of heap operations, espe-
cially in the number of insertions. The savings are more
pronounced on the random graphs, and they get better as
the density increases because the rate of increase in these
numbers in the KO algorithm is larger. Their running times
are comparable but the YTO algorithm performs a bit faster
when the density increases. This is expected because the
YTO algorithm performs fewer heap operations.

4.3 Number of iterations

Burns’, KO, YTO, and Howard’s algorithms perform a num-
ber of iterations before they converge. An upper bound on
the number of iterations for the first three algorithms is n?.
An upper bound for Howard’s algorithm is the product of
the out-degrees of all the nodes. We also measured the value
of k when the HO algorithm terminates. We refer to this
value as “the number of iterations” of the HO algorithm al-
though it is not one in the sense of the other algorithms. It
is always less than n.

From the experimental results reported in [9], the num-
ber of iterations is always less than the number of nodes
for each algorithm although there are a few anomalies with
Howard’s algorithm. It seems that unless n = m, the num-
ber of iterations for the first three algorithms is around n/2
on the random graphs, each of which is strongly connected.
Moreover, Burns’ algorithm performs fewer number of iter-
ations than the KO algorithm, and the KO and YTO algo-
rithms perform the same number of iterations. The number
of iterations of the Howard’s algorithm is drastically small
compared to the other algorithms. In [6], it is conjectured
that the number of iterations is O(lgn) on the average, and
it is O(m) in the worst case. Our experiments support the
worst case conjecture. They also show that the number of it-
erations for Howard’s algorithm and the HO algorithm gets
smaller as the density of the graph increases although some
anomalies exist. This can be explained by the first observa-
tion.

4.4 Karp’'s algorithm and its variants

From the experimental results reported in [9], it seems that
the improvement achieved by the DG algorithm in the num-
ber of arcs visited during the computation of Dk(v) for each

v is very small on the random graphs, indicating that it is
not effective for dense graphs. The improvement on the cir-
cuits 1s far better, which explains the better performance of
the DG algorithm over Karp’s algorithm.

The space efficient version of Karp’s algorithm, the Karp2
algorithm, roughly doubles its running time, as expected.
The space efficiency of the Karp2 algorithm is directly ap-
plicable to the DG and HO algorithms. The most effective
improvement on the Karp’s algorithm is the HO algorithm.
Its running time is even better than those algorithms which
are asymptotically faster than it. Extrapolating from the
Karp2 algorithm, we can say that the space efficient version
of the HO algorithm will double its running time, which still
maintains its superiority to most of the other algorithms.

4.5 Running times

The running time comparisons are given in Tables 2. The
results show the following: Howard’s algorithm is the fastest
by a great margin. The HO algorithm ranks second, which
indicates that the early termination scheme in the HO al-
gorithm 1s very effective. The slowest algorithm is Lawler’s
algorithm.

The good performance of Karp’s algorithm, especially
on small test cases, is mostly due to its simplicity; it con-
tains three simple nested loops. Its simplicity facilitates its
optimization by a compiler, e.g., when compiled without op-
timization, the DG algorithm almost always beats it. How-
ever, as the number of nodes gets larger, its performance
degrades more rapidly.

Burns’ algorithm is slower than the KO and YTO algo-
rithms although it performs fewer number of iterations and
it does not perform expensive operations such as heap oper-
ations. We attribute this behavior to the fact that it is not
incremental; every iteration builds from the scratch.

The OA1 and OA?2 algorithms are not as fast as their run-
ning time implies. They are in general slower than Karp’s
algorithm. We attribute much of this to their complexity;
they are more difficult to optimize than the other algorithms.

5 Conclusions and Future Work

We have presented efficient algorithms for the minimum
mean cycle problem. This paper is the first study that brings
them to the attention of the CAD community. We have sys-
tematically compared these algorithms on random graphs as
well as benchmark circuits and provide important insights
into their individual performance as well as relative perfor-
mance in practice. One of the most surprising results of this
study is that Howard’s algorithm is by far the fastest al-
gorithm on the graphs tested in this study. Unfortunately,
the known bounds on the running time of this algorithm,
including our bounds, are exponential. We are working on
improving these algorithms based on the insight that we
have obtained from this study. So far, we have developed
improved versions of Howard’s algorithm and Lawler’s algo-
rithm.

Acknowledgments

The authors would like to acknowledge support from the following
awards: NSF MIP 95-01615 (CAREER), NSF CCR-9806898, NSF
CCR-9625844, DARPA DABT63-98-C-0045, the University of Cali-
fornia MICRO program, the Interstate Electronics Fellowship, and
the DAC Design Automation Graduate Scholarship.



Table 2: The running time comparisons of Burns’, KO, YTO, Howard’s, HO, Karp’s, DG, Lawler’s, Karp2,
and OA1 algorithms on the random graphs with » nodes and m arcs. For the cases marked with N/A, either
we could not get a result in a day, or we ran out of memory because of the quadratic space complexity of the
algorithm in context.

| n | m | Burns | KO | YTO | Howard | HO | Karp | DG | Lawler | Karp2 | OAl |
512 512 3.48 1.51 1.67 0.01 1.00 0.79 0.06 11.09 1.41 328.88
512 768 2.34 1.04 1.12 0.16 0.32 0.98 1.03 6.51 1.83 5.80
512 1024 2.72 1.21 1.21 6.75 0.29 1.17 1.26 9.26 2.25 5.66
512 1280 4.11 1.82 1.73 0.17 0.31 1.37 1.47 10.62 2.71 6.98
512 1536 3.52 1.59 1.52 0.13 0.27 1.57 1.69 10.98 2.87 6.51
1024 1024 13.98 5.87 6.50 0.02 4.03 3.36 0.25 44 .82 6.72 2790.12
1024 1536 10.17 4.41 4.61 0.34 1.07 4.17 4.66 34.67 7.87 12.34
1024 2048 11.32 4.98 4.99 0.21 0.84 5.05 5.64 30.33 9.04 13.78
1024 2560 15.16 6.74 6.62 0.23 0.94 5.91 6.63 54.77 10.82 23.67
1024 3072 13.91 6.25 5.90 0.22 0.87 6.77 7.56 51.91 14.60 17.13
2048 2048 55.88 23.13 25.46 0.04 | 16.45 13.48 1.02 186.35 21.80 | 20110.28
2048 3072 44.55 20.37 22.19 0.64 4.26 17.14 19.45 178.86 29.65 62.81
2048 4096 42.88 20.59 20.31 0.88 3.14 21.87 24.96 165.61 42.25 37.04
2048 5120 63.22 30.95 29.95 0.76 3.56 27.10 30.83 221.90 53.30 80.97
2048 6144 73.92 36.56 34.61 0.80 3.53 32.86 37.05 244.05 64.89 85.87
4096 4096 | 218.31 91.50 100.40 0.07 N/A 55.76 4.56 659.74 89.59 N/A
4096 6144 | 161.07 79.09 81.05 7.00 N/A 76.82 86.64 736.16 135.46 N/A
4096 8192 | 167.63 88.86 88.01 1.47 N/A [ 103.13 | 115.81 781.84 195.35 N/A
4096 | 10240 | 242.75 | 132.26 | 130.01 1.62 N/A | 129.03 | 144.75 | 1305.47 259.19 N/A
4096 | 12288 | 236.71 139.22 | 137.87 13.84 N/A | 156.70 | 173.94 | 1132.57 313.06 N/A
8192 8192 | 826.08 | 363.45 | 398.11 0.14 N/A N/A N/A | 2819.30 355.00 N/A
8192 | 12288 | 559.88 | 306.52 | 329.73 4.09 N/A N/A N/A | 2949.25 595.02 N/A
8192 | 16384 | 626.65 | 382.82 | 380.58 4.53 N/A N/A N/A | 3708.98 858.01 N/A
8192 | 20480 | 840.50 | 536.50 | 524.82 4.73 N/A N/A N/A | 5112.67 | 1110.84 N/A
8192 | 24576 | 874.21 | 609.60 | 587.51 5.57 N/A N/A N/A | 5417.58 | 1905.20 N/A
References [14] Tto, K., and Parhi, K. K. Determining the minimum iteration
period of an algorithm. J. VLSI Signal Processing 11, 3 (Dec.
Ahuja, R. K., Kodialam, M., Mishra, A. K., and Orlin, J. B. 1995), 229-44.
Computational investigation of maximum flow algorithms. FEu- . . L .
ropean J. of Operational Research, 97 (1997), 509—542. [15] Kar.‘p, R. M. ‘A characterlzatlop of the minimum cycle mean in
. . . a digraph. Discrete Mathematics 23 (1978), 309-11.
Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows.
Prentice Hall, Upper Saddle River, NJ, USA, 1993. [16] Karp, R..M., and O.rlin., J. B. Pgrametric shor1‘:est path algo—
Bacelli, ., Cohen, G., Olsder, G. J., and Quadrat, J.-P. Syn- ﬁgfg;:;i?cfg ?Ifggf?tgoﬁg cyclic staffing. Discrete Applied
chronization and Linearity. John Wiley & Sons, New York, NY, ’ .
USA, 1992. [17] Lawler, E. L. Combinatorial Optimization: Networks and Ma-
Burns, S. M. Performance analysis and optimization of asyn- troids. Holt, Reinhart, and Winston, New York, NY, USA, 1976.
chronous circuits. PhD thesis, California Institute of Technology, [18] Mathur, A., Dasdan, A., and Gupta, R. K. Rate analysis of em-
1991. bedded systems. ACM Trans. on Design Automation of Elec-
Cherkassky, B. V., Goldberg, A. V., and Radzik, T. Shortest tronic Systems 3, 3 (July 1998).
path algorithms: Theory and‘experimentall evaluation. In Proc. 19] Megiddo, N. Combinatorial optimization with rational objec-
5th ACM-SIAM Symp. on Discrete Algorithms (1994), pp. 516~ el tivegfunc;:ions. Mathematics oprperations Research 4, 4 (N]ov.
525. 1979), 414-424.
Cochet-Terrasson, J., Cohen, G., Gaubert, 8., McGettrick, M., [20] Mehlhorn, K., and Naher, S. LEDA: A platform for combinato-
and Quadrat, J.-P. Numerical computation of spectral elements . X .
in max-plus algebra. In Proc. IFAC Conf. on Syst. Structure glgllaélzd geometric computing. Comm. of the ACM 38,1 (1995),
and Control (1998). ’
Cuninghame-Green, R. A, and Yixun, L. Maximum cycle-means [21] Orl.in, J. B, and Ahuja, R. K. New scaling algorithms for the
of weighted digraphs. Applied Math.-JCU 11 (1996), 225-34. ass1gnment‘and minimum mean cycle problems. Mathematical
Dasdan, A., and Gupta, R. K. Faster maximum and minimum Programming 54 (1992), 41-56.
mean cycle algorithms for system performance analysis. IEEE [22] Szymanski, T. G. Computing optimal clock schedules. In Proc.
Trans. Computer-Atded Design 17,10 (Oct. 1998). 29th Design Automation Conf. (1992), ACM/IEEE, pp. 399~
Dasdan, A., Irani, S., and Gupta, R. K. An experimental study 404
of minimum mean cycle algorithms. Tech. rep. #98-32, Univ. of [23] Teich, J., Sriram, S., Thiele, L., and Martin, M. Performance
California, Irvine, July 1998. analysis and optimization of mixed asynchronous synchronous
Gerez, S. H., de Groot, S. M. H., and Herrmann, O. E. A systems. [EEE Trans. Computer-Aided Design 16, 5 (May
polynomial-time algorithm for the computation of the iteration- 1997), 473-84.
pe‘rlod‘ bound in recursive data-flow graphs. IEEE Trans. on [24] Yang, S. Logic synthesis and optimization benchmarks user guide
Circuits and Syst.-1 39,1 (Jan. 1992), 49-52. version 3.0. Tech. rep., Microelectronics Center of North Car-
Gondran, M., and Minoux, M. Graphs and Algorithms. John olina, Jan. 1991.
Wiley and Sons, New York, NY, USA, 1984. [25] Young, N. E., Tarjan, R. E., and Orlin, J. B. Faster parametric

Hartmann, M., and Orlin, J. B.
time ratio cycles with small integral transit times.
23 (1993), 567-74.

Hulgaard, H., Burns, S. M., Amon, T., and Borriello, G. An
algorithm for exact bounds on the time separation of events in
concurrent systems. IEEE Trans. Comput. 44, 11 (Nov. 1995),
1306-17.

Finding minimum cost to
Networks

shortest path and minimum-balance algorithms. Networks 21

(1991), 205-21.



