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abstract: The zip iterator provides the ability to parallel-iterate over several controlled se-
quences simultaneously. A zip iterator is constructed from a tuple of iterators. Moving
the zip iterator moves all the iterators in parallel. Dereferencing the zip iterator returns
a tuple that contains the results of dereferencing the individual iterators.
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zip_iterator synopsis

template<typename IteratorTuple>
class zip_iterator
{

public:
typedef /* see below */ reference;
typedef reference value_type;
typedef value_type* pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;

zip_iterator();
zip_iterator(IteratorTuple iterator_tuple);

template<typename OtherIteratorTuple>
zip_iterator(

const zip_iterator<OtherIteratorTuple>& other
, typename enable_if_convertible<

OtherIteratorTuple

1

mailto:dave@boost-consulting.com
mailto:thomas@styleadvisor.com
http://www.boost-consulting.com
http://www.styleadvisor.com


, IteratorTuple>::type* = 0 // exposition only
);

const IteratorTuple& get_iterator_tuple() const;

private:
IteratorTuple m_iterator_tuple; // exposition only

};

template<typename IteratorTuple>
zip_iterator<IteratorTuple>
make_zip_iterator(IteratorTuple t);

The reference member of zip_iterator is the type of the tuple made of the reference types of
the iterator types in the IteratorTuple argument.

The difference_type member of zip_iterator is the difference_type of the first of the iterator
types in the IteratorTuple argument.

The iterator_category member of zip_iterator is convertible to the minimum of the traversal
categories of the iterator types in the IteratorTuple argument. For example, if the zip_iterator holds
only vector iterators, then iterator_category is convertible to boost::random_access_traversal_tag.
If you add a list iterator, then iterator_category will be convertible to boost::bidirectional_traversal_tag,
but no longer to boost::random_access_traversal_tag.

zip_iterator requirements

All iterator types in the argument IteratorTuple shall model Readable Iterator.

zip_iterator models

The resulting zip_iterator models Readable Iterator.
The fact that the zip_iterator models only Readable Iterator does not prevent you from modifying

the values that the individual iterators point to. The tuple returned by the zip_iterator’s operator* is
a tuple constructed from the reference types of the individual iterators, not their value types. For exam-
ple, if zip_it is a zip_iterator whose first member iterator is an std::vector<double>::iterator,
then the following line will modify the value which the first member iterator of zip_it currently points
to:

zip_it->get<0>() = 42.0;

Consider the set of standard traversal concepts obtained by taking the most refined standard traversal
concept modeled by each individual iterator type in the IteratorTuple argument.The zip_iterator
models the least refined standard traversal concept in this set.

zip_iterator<IteratorTuple1> is interoperable with zip_iterator<IteratorTuple2> if and only
if IteratorTuple1 is interoperable with IteratorTuple2.

zip_iterator operations

In addition to the operations required by the concepts modeled by zip_iterator, zip_iterator pro-
vides the following operations.

zip_iterator();

Returns: An instance of zip_iterator with m_iterator_tuple default constructed.
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zip_iterator(IteratorTuple iterator_tuple);

Returns: An instance of zip_iterator with m_iterator_tuple initialized to itera-
tor_tuple.

template<typename OtherIteratorTuple>
zip_iterator(

const zip_iterator<OtherIteratorTuple>& other
, typename enable_if_convertible<

OtherIteratorTuple
, IteratorTuple>::type* = 0 // exposition only

);

Returns: An instance of zip_iterator that is a copy of other.

Requires: OtherIteratorTuple is implicitly convertible to IteratorTuple.

const IteratorTuple& get_iterator_tuple() const;

Returns: m_iterator_tuple

reference operator*() const;

Returns: A tuple consisting of the results of dereferencing all iterators in m_iterator_tuple.

zip_iterator& operator++();

Effects: Increments each iterator in m_iterator_tuple.

Returns: *this

zip_iterator& operator--();

Effects: Decrements each iterator in m_iterator_tuple.

Returns: *this

template<typename IteratorTuple>
zip_iterator<IteratorTuple>
make_zip_iterator(IteratorTuple t);

Returns: An instance of zip_iterator<IteratorTuple> with m_iterator_tuple initial-
ized to t.

template<typename IteratorTuple>
zip_iterator<IteratorTuple>
make_zip_iterator(IteratorTuple t);

Returns: An instance of zip_iterator<IteratorTuple> with m_iterator_tuple initial-
ized to t.

Examples

There are two main types of applications of the zip_iterator. The first one concerns runtime efficiency:
If one has several controlled sequences of the same length that must be somehow processed, e.g., with
the for_each algorithm, then it is more efficient to perform just one parallel-iteration rather than
several individual iterations. For an example, assume that vect_of_doubles and vect_of_ints are
two vectors of equal length containing doubles and ints, respectively, and consider the following two
iterations:
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std::vector<double>::const_iterator beg1 = vect_of_doubles.begin();
std::vector<double>::const_iterator end1 = vect_of_doubles.end();
std::vector<int>::const_iterator beg2 = vect_of_ints.begin();
std::vector<int>::const_iterator end2 = vect_of_ints.end();

std::for_each(beg1, end1, func_0());
std::for_each(beg2, end2, func_1());

These two iterations can now be replaced with a single one as follows:

std::for_each(
boost::make_zip_iterator(
boost::make_tuple(beg1, beg2)
),

boost::make_zip_iterator(
boost::make_tuple(end1, end2)
),

zip_func()
);

A non-generic implementation of zip_func could look as follows:

struct zip_func :
public std::unary_function<const boost::tuple<const dou-

ble&, const int&>&, void>
{
void operator()(const boost::tuple<const double&, const int&>& t) const
{
m_f0(t.get<0>());
m_f1(t.get<1>());

}

private:
func_0 m_f0;
func_1 m_f1;

};

The second important application of the zip_iterator is as a building block to make combining
iterators. A combining iterator is an iterator that parallel-iterates over several controlled sequences
and, upon dereferencing, returns the result of applying a functor to the values of the sequences at the
respective positions. This can now be achieved by using the zip_iterator in conjunction with the
transform_iterator.

Suppose, for example, that you have two vectors of doubles, say vect_1 and vect_2, and you need
to expose to a client a controlled sequence containing the products of the elements of vect_1 and
vect_2. Rather than placing these products in a third vector, you can use a combining iterator that
calculates the products on the fly. Let us assume that tuple_multiplies is a functor that works
like std::multiplies, except that it takes its two arguments packaged in a tuple. Then the two
iterators it_begin and it_end defined below delimit a controlled sequence containing the products of
the elements of vect_1 and vect_2:

typedef boost::tuple<
std::vector<double>::const_iterator,
std::vector<double>::const_iterator
> the_iterator_tuple;
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typedef boost::zip_iterator<
the_iterator_tuple
> the_zip_iterator;

typedef boost::transform_iterator<
tuple_multiplies<double>,
the_zip_iterator
> the_transform_iterator;

the_transform_iterator it_begin(
the_zip_iterator(
the_iterator_tuple(
vect_1.begin(),
vect_2.begin()
)

),
tuple_multiplies<double>()
);

the_transform_iterator it_end(
the_zip_iterator(
the_iterator_tuple(
vect_1.end(),
vect_2.end()
)

),
tuple_multiplies<double>()
);
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