The Boost Statechart Libra- Tutoria Pagel of 32

The Boost Statechart

POOS t Library

LiIiFRARI ES

Tutorial

A Japanese translation of an earlier version aftiliorial can be found at

http://prdownloads.sourceforge.jp/jyugem/7127Hsroriakjp.pdf. Kindly contributed by Mitsuo
Fukasawa.

Contents

Introduction
How to read this tutorial
Hello World!
Basic topics: A stop watch
Defining states and events
Adding reactions
Statelocal storage
Getting state information out of the machine
Intermediate topics: A digital camera
Spreading a state machine over multiple translatiots
Deferring events
Guards
In-state reactions
Transition actions
Advanced topics
Specifying multiple reactions for a state
Posting events
History
Orthogonal states
State queries
State type information
Exception handling
Submachines & Parametrized States
Asynchronous state machines

Introduction

The Boost Statechart library is a framework thidves you to quickly transform a UML statechart
into executable C++ codejthout needing to use a code generator. Thanks to sufgpa@imost all
UML features the transformation is straight-forwardl the resulting C++ code is a nearly
redundancy-free textual description of the statdcha

How to read this tutorial

This tutorial was designed to be read linearlystRime users should start reading right at the
beginning and stop as soon as they know enoughédaask at hand. Specifica

2006/12/0:

The Boost Statechart Libra- Tutoria Page2 of 32

o Small and simple machines with just a handful afest can be implemented reasonably well by
using the features described unBesic topics: A stop watch

e For larger machines with up to roughly a dozerest#te features described unblgermediate
topics: A digital camerare often helpful

o Finally, users wanting to create even more complaghines and project architects evaluating
Boost.Statechart should also read Alsanced topicsection at the end. Moreover, reading the
Limitations section in the Rationale is strongly suggested

Hello World!

We will use the simplest possible program to malkefiost steps. The statechart ...

(Greeting \

H entry / std::cout << "Hello Worldl\n";

exit / std:.cout << "Bye Bye World\n";
-

... Is implemented with the following code:

#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>
#include <iostream>

namespace sc = boost::statechart;

/l We are declaring all types as structs only to av oid having to
Il type public. If you don't mind doing so, you can just as well
Il use class.

/l We need to forward-declare the initial state bec ause it can
I/l only be defined at a point where the state machi ne is

/Il defined.

struct Greeting;

// Boost.Statechart makes heavy use of the curiousl y recurring

/[template pattern. The deriving class must always
/I the first parameter to all base class templates.
1

be passed as

/I The state machine must be informed which state i t has to

/I enter when the machine is initiated. That's why Greeting is
/I passed as the second template parameter.

struct Machine : sc::state_machine< Machine, Greeti ng > {};

/I For each state we need to define which state mac hine it

Il belongs to and where it is located in the statec hart. Both is
Il specified with Context argument that is passed t 0

/I simple_state<>. For a flat state machine as we h ave it here,
/I the context is always the state machine. Consequ ently,

/l Machine must be passed as the second template pa rameter to
I/l Greeting's base (the Context parameter is explai ned in more
/Il detail in the next example).

struct Greeting : sc::simple_state< Greeting, Machi ne >

{

2006/12/0:

The Boost Statechart Libra- Tutoria Page3 of 32

Il Whenever the state machine enters a state, it creates an
/Il object of the corresponding state class. The o bject is then
Il kept alive as long as the machine remains in t he state.
/l Finally, the object is destroyed when the stat e machine
/Il exits the state. Therefore, a state entry acti on can be
/l defined by adding a constructor and a state ex it action can
/I be defined by adding a destructor.
Greeting() { std::cout << "Hello World\n"; } // entry
~Greeting() { std::.cout << "Bye Bye World!\n"; } I exit

%

int main()

{
Machine myMachine;
/l The machine is not yet running after construct ion. We start
/I it by calling initiate(). This triggers the co nstruction of
/l the initial state Greeting
myMachine.initiate();
/l When we leave main(), myMachine is destructed what leads to
/l the destruction of all currently active states
return O;

}

This printsHello World! andBye Bye World! before exiting.

Basic topics: A stop watch

Next we will model a simple mechanical stop watdthva state machine. Such watches typically
two buttons:

o Start/Stop
¢ Reset

And two states:

o Stopped: The hands reside in the position whereege last stopped:
o Pressing the reset button moves the hands bablk @ position. The watch remains in
Stopped state
o Pressing the start/stop button leads to a transitidhe Running state
¢ Running: The hands of the watch are in motion andicually show the elapsed time
o Pressing the reset button moves the hands bablk @ position and leads to a transitio
the Stopped state
o Pressing the start/stop button leads to a transitidhe Stopped state

Here is one way to specify this in UM

2006/12/0:

The Boost Statechart Libra- Tutoria Page4 of 32

4 Active N

1
. E (Stopped) EvStartStop | Running)
-~
EvReset .%
> EvStartStop

~. T
-~ |
- vy

Defining states and events

The two buttons are modeled by two events. Moreaveralso define the necessary states and the
initial state.The following code is our starting point, subsequdrcode snippets must be inserted

#include <boost/statechart/event.hpp>
#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>
namespace sc = boost::statechart;

struct EvStartStop : sc::event< EvStartStop > {};
struct EVReset : sc::event< EvReset > {};

struct Active;

struct StopWatch : sc::state_machine< StopWatch, Ac

struct Stopped,;

/I The simple_state class template accepts up to fo
Il - The third parameter specifies the inner initia

/I there is one. Here, only Active has inner stat

/I why it needs to pass its inner initial state S

Il base

Il - The fourth parameter specifies whether and wha
/I history is kept

/I Active is the outermost state and therefore need
/I state machine class it belongs to
struct Active : sc::simple_state<

Active, StopWatch, Stopped > {};

/I Stopped and Running both specify Active as their
/l which makes them nested inside Active

struct Running : sc::simple_state< Running, Active
struct Stopped : sc::simple_state< Stopped, Active

/I Because the context of a state must be a complet
/I not forward declared), a machine must be defined
/["outside to inside". That is, we always start wi

/l machine, followed by outermost states, followed
/I inner states of outermost states and so on. We ¢
/I breadth-first or depth-first way or employ a mix

tive > {};

ur parameters:
| state, if

es, which is
topped to its

t kind of

s to pass the

Context,

>{}
>{}

e type (i.e.
from

th the state
by the direct
andosoina
ture of the

2006/12/0:

The Boost Statechart Libra- Tutoria Page5 of 32

{/ two.

int main()

{
StopWatch myWatch;

myWatch.initiate();
return O;

}

This compiles but doesn't do anything observabie ye

Adding reactions

For the moment we will use only one type of reactioansitions. Wénsert the bold parts of the
following code:

#i ncl ude <boost/statechart/transition. hpp>
...

struct Stopped,;
struct Active : sc::simple_state< Active, StopWatch , Stopped >

{

typedef sc::transition< EvReset, Active > reactions;

|8

struct Running : sc::simple_state< Running, Active >

{

typedef sc::transition< EvStartStop, Stopped > reactions;

8

struct Stopped : sc::simple_state< Stopped, Active >

{

typedef sc::transition< EvStartStop, Running > reactions;

h

/I A state can define an arbitrary number of reacti ons. That's
/ why we have to put them into an mpl::list<> as s oon as there
/I 'is more than one of them

Il (see Specifying multiple reactions for a state).

int main()

{

StopWatch myWatch;

myWatch.initiate();
nmyWat ch. process_event (EvStartStop());
myWat ch. process_event (EvStart Stop());
nmyWat ch. process_event (EvStart Stop())
myWat ch. process_event (EvReset ());

return O;

}

Now we have all the states and all the transitiongace and a number of events are also senei
stop watch. The machine dutifully makes the traosst we would expect, but no actions are exec

2006/12/0:

The Boost Statechart Libra- Tutoria Page6 of 32

yet.
State-local storage

Next we'll make the stop watch actually measure tibepending on the state the stop watch is ir
need different variables:

¢ Stopped: One variable holding the elapsed time
¢ Running: One variable holding the elapsed tand one variable storing the point in time at
which the watch was last started.

We observe that the elapsed time variable is neededatter what state the machine is in. Moreover,
this variable should be reset to 0 when we serifiviteset event to the machine. The other variable
is only needed while the machine is in the Runmsitage. It should be set to the current time of the
system clock whenever we enter the Running staienléxit we simply subtract the start time from
the current system clock time and add the resuli¢elapsed time.

#i ncl ude <cti ne>
/...

struct Stopped,;
struct Active : sc::simple_state< Active, StopWatch , Stopped >

{ |
publi c:
typedef sc::transition< EvReset, Active > react ions;

Active() : elapsedTine (0.0) {}

doubl e El apsedTi ne() const { return el apsedTine_; }

doubl e & El apsedTine() { return el apsedTine_; }
private:

doubl e el apsedTi ne_;

¢
struct Running : sc::simple_state< Running, Active >

{
publi c:
typedef sc::transition< EvStartStop, Stopped > reactions;

Running() : startTime_(std::time(0)) {}
~Runni ng()

/I Similar to when a derived class object acc esses its
/I base class portion, context<>() is used to gain
/I access to the direct or indirect context o f a state.
/I This can either be a direct or indirect ou ter state
/I or the state machine itself
/Il (e.g. here: context< StopWatch >()).
context< Active >().El apsedTinme() +=
std::difftime(std::time(O), startTinme_);
}

private:
std::tinme_t startTine_;

2006/12/0:

The Boost Statechart Libra- Tutoria Page7 of 32

...
The machine now measures the time, but we canhoéyeve it from the main program.

At this point, the advantages of state-local ster@ghich is still a relatively little-known featyrenay
not yet have become apparent. The FAQ itgvindt's so cool about staltecal storage?tries to
explain them in more detail by comparing this St@l with one that does not make use of state-
local storage.

Getting state information out of the machine

To retrieve the measured time, we need a mechdniget state information out of the machine. With
our current machine design there are two ways tinaio For the sake of simplicity we use the less
efficient one:state_cast<>() (StopWatch2.cpp shows the slightly more compléaraitive). As
the name suggests, the semantics are very simitaetones oflynamic_cast . For example, when
we callmyWatch.state cast< const Stopped & >() and the machine is currently in the
Stopped state, we get a reference tcStopped state. Otherwisstd::bad_cast is thrown. We
can use this functionality to implemenStopWatch member function that returns the elapsed time.
However, rather than ask the machine in which stadeand then switch to different calculations fo
the elapsed time, we put the calculation into ttoped and Running states and use an interface to
retrieve the elapsed time:

#i ncl ude <i ostreanp

...

struct |El apsedTi ne

{
b

struct Active;
struct StopWatch : sc::state_machine< StopWatch, Ac tive >

virtual doubl e El apsedTinme() const = O;

doubl e El apsedTi ne() const

{

return state_cast< const |ElapsedTine & >().El apsedTi nme();

}
h

...

struct Running : | El apsedTi ne,
sc::simple_state< Running, Active >

{
public:
typedef sc::transition< EvStartStop, Stopped > reactions;

Running() : startTime_(std::time(0)) {}
~Running()

{
}

context< Active >().El apsedTi ne() El apsedTi ne();

2006/12/0:

The Boost Statechart Libra- Tutoria Page8 of 32

}.

virtual doubl e El apsedTi ne() const

{

return context< Active >().El apsedTinme() +
std::difftinme(std::tine(0), startTime_);
}

private:
std::time_t startTime_;

struct Stopped : | El apsedTi ne,

{

}.

sc::simple_state< Stopped, Active >
typedef sc::transition< EvStartStop, Running > re actions;

virtual doubl e El apsedTi ne() const

{
}

return context< Active >().El apsedTi ne();

int main()

{

}

StopWatch myWatch;
myWatch.initiate();

std::cout << nyWatch. El apsedTine() << "\n";
myWatch.process_event(EvStartStop());

std::cout << nyWatch. El apsedTinme() << "\n";
myWatch.process_event(EvStartStop());

std::cout << nyWatch. El apsedTine() << "\n";
myWatch.process_event(EvStartStop());

std::cout << nyWatch. El apsedTinme() << "\n";
myWatch.process_event(EvReset());

std::cout << nyWatch. El apsedTine() << "\n";
return O;

To actually see time being measured, you might wasingle-step through the statementsain
() . The StopWatch example extends this program fataractive console application.

Inte

rmediate topics: A digital camera

So far so good. However, the approach presentededias a few limitations:

Bad scalability: As soon as the compiler reachegtsint where

state_machine::initiate() is called, a number of template instantiatione talace,
which can only succeed if the full declaration a€le and every state of the machine is known.
That is, the whole layout of a state machine mastriplemented in one single translation unit
(actions can be compiled separately, but this rsoamportance here). For bigger (and more
real-world) state machines, this leads to the Valhg limitations:

o At some point compilers reach their internal tertglastantiation limits and give up. Tl
can happen even for moderatsiged machines. For example, in debug mode oneant
compiler refused to compile earlier versions of Bitdlachine example for anything
above 3 bits. This means that the compiler reaghéiinits somewhere between 8 sta

2006/12/0:

The Boost Statechart Libra- Tutoria Page9 of 32

24 transitions and 16 states, 64 transitions
o Multiple programmers can hardly work on the samaéestachine simultaneously bece
every layout change will inevitably lead to a re@ulation of the whole state machine
« Maximum one reaction per event: According to UM&tate can have multiple reactions
triggered by the same event. This makes sense athezactions have mutually exclusive
guards. The interface we used above only allowatfonost one unguarded reaction for each
event. Moreover, the UML concepts junction and cagioint are not directly supported

All these limitations can be overcome with cust@aationsWarning: It is easy to abuse custom
reactions up to the point of invoking undefined behvior. Please study the documentation before
employing them!

Spreading a state machine over multiple translation units

Let's say your company would like to develop atdigtamera. The camera has the following controls:

¢ Shutter button, which can be half-pressed and-fuigssed. The associated events are
EvShutterHalf , EvShutterFull andEvShutterReleased

o Config button, represented by theConfig event

o A number of other buttons that are not of intehese

One use case for the camera says that the photmgrean half-press the shutterywherein the
configuration mode and the camera will immediatgyinto shooting mode. The following statechart
is one way to achieve this behavior:

4 NotShooting ~
’ |l \ \ - / iguring)
€ E;Conﬂgx Configuring
EvConfig
<
~
—
N J
/N
EvShutterReleased EvShutterHalf
WV

(’ shooting \\

L)

The Configuring and Shooting states will contaimeuous nested states while the Idle state is
relatively simple. It was therefore decided to 8o teams. One will implement the shooting mode
while the other will implement the configuration de The two teams have already agreed on the
interface that the shooting team will use to retithe configuration settings. We would like to ues
that the two teams can work with the least possitterference. So, we put the two states in theim o
translation units so that machine layout changésinvthe Configuring state will never lead to a
recompilation of the inner workings of the Shootstgte and vice versa.

Unlike in the previous example, the excerpts preséed here often outline different options to
achieve the same effect. That's why the code is @ftnot equal to the Camera example code.
Comments mark the parts where this is the

2006/12/0:

The Boost Statechart Libra- Tutoria PagelC of 32

Camera.hpp:

#ifndef CAMERA_HPP_INCLUDED
#define CAMERA_HPP_INCLUDED

#include <boost/statechart/event.hpp>

#include <boost/statechart/state_machine.hpp>
#include <boost/statechart/simple_state.hpp>
#include <boost/statechart/custom_reaction.hpp>

namespace sc = boost::statechart;

struct EvShutterHalf : sc::event< EvShutterHalf > { L
struct EvShutterFull : sc::event< EvShutterFull > { h
struct EvShutterRelease : sc::event< EvShutterRelea se > {};

struct EvConfig : sc::event< EvConfig > {};

struct NotShooting;

struct Camera : sc::state_machine< Camera, NotShoot ing >
{

bool IsMemoryAvailable() const { return true; }

bool IsBatteryLow() const { return false; }

hy

struct Idle;
struct NotShooting : sc::simple_state<
NotShooting, Camera, Idle >

{
/[With a custom reaction we only specify that we m ght do
I/l something with a particular event, but the act ual reaction
/l'is defined in the react member function, which can be

/l implemented in the .cpp file.
typedef sc::customreaction< EvShutterHalf > reactions;

...
sc::result react(const EvShutterHalf &);

¥
struct Idle : sc::simple_state< Idle, NotShooting >
{

typedef sc::customreaction< EvConfig > reactions;

...
sc::result react(const EvConfig &);

¢
#endif
Camera.cpp:
#include "Camera.hpp"

/I The following includes are only made here but no tin
/[Camera.hpp

2006/12/0:

The Boost Statechart Libra- Tutoria

/I The Shooting and Configuring states can themselv
/l same pattern to hide their inner implementation,

/[ensures that the two teams working on the Camera
/I machine will never need to disturb each other.
#include "Configuring.hpp"

#include "Shooting.hpp"

...

/I not part of the Camera example
sc::result NotShooting::react(const EvShutterHalf

{

return transit< Shooting >();

}

sc::result Idle::react(const EvConfig &)

{

return transit< Configuring >();

}

Caution: Any callto si npl e_state<>::transit<>() or
si npl e_state<>::term nate() (seereference will inevitably destruct the state object
(similar to del et e t hi s;)! Thatis, code executed after any of these calisay invoke
undefined behavior! That's why these functions should only be calkegart of a return statement.

Deferring events

The inner workings of the Shooting state could lasKollows:

EvshutterReleased

J/Ev%hutterHalf
Shooting

~

A

\
(Focused)

é Focusing ‘\ (' Storing \\

H EvShutterFull () / defer

L

EvinFocus / DisplayFocused()

EvshutterFull [IsMemoryAvailable()]

/

/\

EvShutterFull [HsMemoryAvailable()]

Pagell of 32

es apply the
which
state

&)

2006/12/0:

The Boost Statechart Libra- Tutoria Pagel2 of 32

When the user half-presses the shutter, Shootidgtamner initial state Focusing are enteredhin
Focusing entry action the camera instructs thediogucircuit to bring the subject into focus. The
focusing circuit then moves the lenses accordiagly sends the EvinFocus event as soon as it is
Of course, the user can fully-press the shuttelenthe lenses are still in motion. Without any
precautions, the resulting EvShutterFull event waiinply be lost because the Focusing state does
not define a reaction for this event. As a resh#,user would have to fully-press the shutterragai
after the camera has finished focusing. To prethest the EvShutterFull event is deferred inside th
Focusing state. This means that all events ottyipis are stored in a separate queue, which is ethpti
into the main queue when the Focusing state is@xit

struct Focusing : sc::state< Focusing, Shooting >
{
typedef mpl::list<
sc::.custom_reaction< EvinFocus >,
sc::deferral < EvShutterFul | >
> reactions;

Focusing(my_context ctx);
sc::result react(const EvinFocus &);

h
Guards

Both transitions originating at the Focused stagetdggered by the same event but they have my
exclusive guards. Here is an appropriate custoctioza

/I not part of the Camera example
sc::result Focused::react(const EvShutterFull &)

{
if (context< Camera >().IsMemoryAvailable())
{
return transit< Storing >();
}
else
{
/I The following is actually a mixture between an in-state
/l reaction and a transition. See later on how to implement
/I proper transition actions.
std::cout << "Cache memory full. Please wait... \n";
return transit< Focused >();
}
}

Custom reactions can of course also be implemehitedtly in the state declaration, which is often
preferable for easier browsing.

Next we will use a guard to prevent a transitiod kat outer states react to the event if the baite
low:

Camera.cpp:

...
sc:.result NotShooting::react(const EvShutterHalf &)

{

2006/12/0:

The Boost Statechart Libra- Tutoria Pagel3 of 32

if (context< Camera >().IsBatteryLow())

{

/I We cannot react to the event ourselves, so w e forward it
I/ to our outer state (this is also the default if a state
/I defines no reaction for a given event).

return forward_event();

}

else

{

return transit< Shooting >();

}

}
...

In-state reactions

The self-transition of the Focused state could bisomplemented as am-state reactiopwhich has
the same effect as long as Focused does not hgwenay or exit actions:

Shooting.cpp:

...
sc:.result Focused::react(const EvShutterFull &)

{

if (context< Camera >().IsMemoryAvailable())

{

return transit< Storing >();

}

else

{

std::cout << "Cache memory full. Please wait... \n";
/I Indicate that the event can be discarded. So , the
/I dispatch algorithm will stop looking for a r eaction
/I and the machine remains in the Focused state
return discard_event();

}

}
...

Because the in-state reaction is guarded, we meechploy acustom_reaction<> here. For
unguarded in-state reactioms state reaction <> should be used for better code-readability.

Transition actions
As an effect of every transition, actions are ekegun the following order:

1. Starting from the innermost active state, alt agtions up to but excluding tih@ermost
common context

2. The transition action (if present)
3. Starting from the innermost common context, alhyeactions down to the target state followed

by the entry actions of the initial states

Example

2006/12/0:

The Boost Statechart Libra- Tutoria Pagelq of 32

é InnermostCommonOuter N
4 A ™
4 ™
B 'd X ™
(D | Ev /i) - (T\\
) 7 @—>
. J .
. v, . v,
. S

Here the order is as follows: ~D(), ~C(), ~B(), ¥A(), X(), Y(), Z(). The transition action t() is
therefore executed in the context of the Innermost@onOuter state because the source state has
already been left (destructed) and the target badenot yet been entered (constructed).

With Boost.Statechart, a transition action can beeanber oiny common outer context. That is, the
transition between Focusing and Focused could p&emented as follows:

Shooting.hpp:

...
struct Focusing;
struct Shooting : sc::simple_state< Shooting, Camer a, Focusing >

{

typedef sc::transition<
EvShutterRelease, NotShooting > reactions;

...
voi d D spl ayFocused(const EvlnFocus &);
h

...

/I not part of the Camera example
struct Focusing : sc::simple_state< Focusing, Shoot ing >

{

typedef sc::transition< EvinFocus, Focused
Shoot i ng, &Shooting: : D spl ayFocused > reactlons
h
Or, the following is also possible (here the statelmrze itself serves as the outermost context):

/I not part of the Camera example
struct Camera : sc::state_machine< Camera, NotShoot ing >

{
3

voi d D spl ayFocused(const EvlnFocus &);

2006/12/0:

The Boost Statechart Libra- Tutoria Pagelt of 32

/I not part of the Camera example
struct Focusing : sc::simple_state< Focusing, Shoot ing >

{

typedef sc::transition< EvinFocus, Focused :
Canera, &Canera:: D spl ayFocused > reactions;
3

Naturally, transition actions can also be invokehf custom reactior
Shooting.cpp:

...
sc:.result Focusing::react(const EvinFocus & evt)

/l We have to manually forward evt
return transit< Focused >(&Shoot i ng: : Di spl ayFocused, evt);

}
Advanced topics

Specifying multiple reactions for a state

Often a state must define reactions for more thenevent. In this case, ampl::list<> must be
used as outlined below:

...

#i ncl ude <boost/npl/1ist. hpp>
nanespace npl = boost:: npl;
...

struct Playing : sc::simple_state< Playing, Mp3Play er>

{
typdef mpl::list<
sc:.custom_reaction< EvFastForward >,
sc::transition< EvStop, Stopped > > reactions;

[* .
J§
Posting events
Non-trivial state machines often need to post inteevants. Here's an example of how to do this:
Pumping::~Pumping()
ipost_event(EvPumpingFinished());

The event is pushed into the main queue. The evetit® queue are processed as soon as the current
reaction is completed. Events can be posted fr@meneact functions, entry-, exit- and transition

2006/12/0:

The Boost Statechart Libra- Tutoria Pagel€ of 32

actions. However, posting from inside entry actima bit more complicated (see e.g.
Focusing::Focusing() in Shooting.cpp in the Camera example):

struct Pumping : sc: : st at e< Pumping, Purifier >

{
Punpi ng(nmy_context ctx) : ny_base(ctx)

{
post_event(EvPumpingStarted());

...
h

As soon as an entry action of a state needs t@acbiite "outside world" (here: the event queud@n t
state machine), the state must derive fetate<> rather than fronsimple_state<> and must
implement a forwarding constructor as outlined ab@part from the construct@tate<> offers
the same interface asmple_state<>). Hence, this must be done whenever an entryraot@kes
one or more calls to the following functions:

simple_state<>::post_event()
simple_state<>::clear_shallow_history<>()
simple_state<>::clear_deep_history<>()
simple_state<>::outermost_context()
simple_state<>::context<>()
simple_state<>::state_cast<>()
simple_state<>::state_downcast<>()
simple_state<>::state_begin()
simple_state<>::state_end()

In my experience, these functions are needed anglyrin entry actions so this workaround should
not uglify user code too much.

History

Photographers testing beta versions ofdigital camerasaid that they really liked that half-pressing
the shutter anytime (even while the camera is beamgigured) immediately readies the camera for
picture-taking. However, most of them found it unitive that the camera always goes into the idle
mode after releasing the shutter. They would ragberthe camera go back into the state it haddefor
half-pressing the shutter. This way they can eadegythe influence of a configuration setting by
modifying it, half- and then fully-pressing the #few to take a picture. Finally, releasing the sdut

will bring them back to the screen where they haweelified the setting. To implement this behavior
we'd change the state chart as follc

2006/12/0:

The Boost Statechart Libra- Tutoria Pagel7 of 32

4 NotShooting)
ldle : (Configuri \
{ \ EvConfig onfiguring
=
. e . __ EvConfig
x
e
4\ g?
. J
EvShutterReleased EvShutterHalf
\/

(’ Shooting \

L)

As mentioned earlier, the Configuring state corgarfairly complex and deeply nested inner mac
Naturally, we'd like to restore the previous stiie/n to theinnermost sta{g) in Configuring, that's
why we use a deep history pseudo state. The agstciade looks as follows:

/I not part of the Camera example
struct NotShooting : sc::simple_state<

NotShooting, Camera, Idle, sc:: has_deep_history >
{
...
¢
...
struct Shooting : sc::simple_state< Shooting, Camer a, Focusing >
{
typedef sc::transition<
EvShutterRelease, sc:: deep_history< |dl e >>reactions;
...
¢

History has two phases: Firstly, when the stateainmg the history pseudo state is exited,
information about the previously active inner stararchy must be saved. Secondly, when a
transition to the history pseudo state is made,l&te saved state hierarchy information must be
retrieved and the appropriate states entered. drheer is expressed by passing either
has_shallow_history , has_deep_history orhas_full_history (which combines
shallow and deep history) as the last parametiretsimple_state andstate class templates.
The latter is expressed by specifying eitsieallow _history<> ordeep_history<> asa
transition destination or, as we'll see in an instas an inner initial state. Because it is pdesimat a
state containing a history pseudo state has ne@r éntered before a transition to history is made,
both class templates demand a parameter specttyindefault state to enter in such situations.

The redundancy necessary for using history is aebédr consistency at compile time. That is,

2006/12/0:

The Boost Statechart Libra- Tutoria Pagel8 of 32

state machine wouldn't have compiled had we foegadid pastias_deep_history to the base of
NotShooting

Another change request filed by a few beta tesiys that they would like to see the camera go back
into the state it had before turning it off wheeythurn it back on. Here's the implementation:

é Off R
®)
/N
EvOff EvOn
N4
4 NotShooting)
(Idle) \ i (iguIri \
EvConfig - Configuring
=
- EvConfig
~
~—
h vy
/N
EvShutterReleased EvShutterHalf
W
(’ Sshooting _\
EvOff () / defer
EvOn () / defer
...
/I not part of the Camera example
struct NotShooting : sc::simple_state< NotShooting, Camera,
mpl::list< sc::deep_history< Idle > >,
sc:: has_deep_history >
{
...
h

...

Unfortunately, there is a small inconvenience dusame template-related implementation details.
When the inner initial state is a class templas¢aintiation we always have to put it into an
mpl::list<> , although there is only one inner initial stateor®bver, the current deep history
implementation has sonfienitations

Orthogonal states

2006/12/0:

The Boost Statechart Libra- Tutoria PagelS of 32

4 Active N

(MNumLockOff 3 EvNumLockPressed (MumlLockOn

~
“f
.% - EvhumLockPressed
~

—
(CapsLockOff) EvCapsLockPressed ‘H' CapsLockOn)
.4>' =
H _ EvCapsLockPressed
<
—

(ScrollLockOff EvScrollockPressed ‘H' ScrollLockOn)

EvScrollLockPressed

!

—
e vy

To implement this statechart you simply specify entbran one inner initial state (see the Keyboard
example):

struct Active;
struct Keyboard : sc::state_machine< Keyboard, Acti ve > {};

struct NumLockOff;
struct CapsLockOff;
struct ScrollLockOff;
struct Active: sc::simple_state< Active, Keyboard,
npl ::1ist< NunmbockOff, CapsLockOff, ScrollLockOif >>{};

Active's inner states must declare which orthogoegilon they belong to:

struct EvNumLockPressed : sc::event< EvNumLockPress ed > {};
struct EvCapsLockPressed : sc::event< EvCapsLockPre ssed > {};
struct EvScrollLockPressed :

sc::event< EvScrollLockPressed > {};

struct NumLockOn : sc::simple_state<
NumLockOn, Active ::orthogonal< 0 >>
{
typedef sc::transition<
EvNumLockPressed, NumLockOff > reactions;

¢
struct NumLockOff : sc::simple_state<

NumLockOff, Active ::orthogonal< 0 >>
{

typedef sc::transition<
EvNumLockPressed, NumLockOn > reactions;

J§

2006/12/0:

The Boost Statechart Libra- Tutoria Page2C of 32

struct CapsLockOn : sc::simple_state<
CapsLockOn, Active ::orthogonal< 1 >>
{
typedef sc::transition<
EvCapsLockPressed, CapsLockOff > reactions;

h
struct CapsLockOff : sc::simple_state<

CapsLockOff, Active :.orthogonal< 1 >>
{

typedef sc::transition<
EvCapsLockPressed, CapsLockOn > reactions;

h
struct ScrollLockOn : sc::simple_state<

ScrollLockOn, Active ::orthogonal< 2 >>
{

typedef sc::transition<
EvScrollLockPressed, ScrollLockOff > reactions;

8
struct ScrollLockOff : sc::simple_state<

ScrollLockOff, Active ::orthogonal< 2 >>
{

typedef sc::transition<
EvScrollLockPressed, ScrollLockOn > reactions;

h
orthogonal< 0 > is the default, sblumLockOnandNumLockOff could just as well pass
Active instead ofActive::orthogonal< 0 > to specify their context. The numbers passed to

theorthogonal member template must correspond to the list mwsiti the outer state. Moreover,
the orthogonal position of the source state o&adition must correspond to the orthogonal posiion
the target state. Any violations of these rulesl lmacompile time errors. Examples:

/l Example 1: does not compile because Active speci fies
/l only 3 orthogonal regions
struct WhateverLockOn: sc::simple_state<

WhateverLockOn, Active . . orthogonal< 3>>{}
/[Example 2: does not compile because Active speci fies
Il that NumLockOff is part of the "0Oth" orthogonal region
struct NumLockOff : sc::simple_state<
NumLockOff, Active . . orthogonal< 1>>{}
/l Example 3: does not compile because a transition between

/I different orthogonal regions is not permitted
struct CapsLockOn : sc::simple_state<
CapsLockOn, Active . . orthogonal< 1>>
{
typedef sc::transition<
EvCapsLockPressed, CapsLockOff > reactions;

h

2006/12/0:

The Boost Statechart Libra- Tutoria Page21 of 32

struct CapsLockOff : sc::simple_state<
CapsLockOff, Active . . orthogonal< 2>>
{
typedef sc::transition<
EvCapsLockPressed, CapsLockOn > reactions;

I
State queries

Often reactions in a state machine depend on tihe=astate in one or more orthogonal regions. ¢
because orthogonal regions are not completely goihal or a certain reaction in an outer state can
only take place if the inner orthogonal regionsiargarticular states. For this purpose, the
state_cast<> function introduced undégetting state information out of the machisalso
available within states.

As a somewhat far-fetched example, let's assunt@tinaeyboardalso accepts
EvRequestShutdown events, the reception of which makes the keybtardinate only if all lock
keys are in the off state. We would then modify Klegboard state machine as follows:

struct EvRequestShutdown : sc::event< EvRequestShut down > {};

struct NumLockOff;
struct CapsLockOff;
struct ScrollLockOff;
struct Active: sc::simple_state< Active, Keyboard,
mpl::list< NumLockOff, CapsLockOff, ScrollLockOff > >
{

typedef sc::custom_reaction< EvRequestShutdown > reactions;

sc::result react(const EvRequestShutdown &)

if ((state_downcast< const NumLockOff * >() ! =0) &&
(state_downcast< const CapsLockOff * >() I=0) &&
(state_downcast< const ScrollLockOff * >()!1=0))
{
return terminate();
}
else
{
return discard_event();
}

}
8

Passing a pointer type instead of reference tymdteein O pointers being returned instead of
std::bad_cast being thrown when the cast fails. Note also theeafstate_downcast<>()
instead ofstate_cast<>() . Similar to the differences between
boost::polymorphic_downcast<>() anddynamic_cast , state_downcast<>() is a
much faster variant aftate cast<>() and can only be used when the passed type ista mos
derived typestate_cast<>() should only be used if you want to query an addél base.

Custom state queries

It is often desirable to find out exactly whichts{@) a machine currently resides in. To some ¢

2006/12/0:

The Boost Statechart Libra- Tutoria Page22 of 32

this is already possible witate_cast<>() andstate_downcast<>() but their utility is

rather limited because both only return a yes/rewanto the question "Are you in state X?". It is
possible to ask more sophisticated questions wharpgss an additional base class rather thanea stat
class tostate_cast<>() but this involves more work (all states need towgefrom and

implement the additional base), is slow (underbedstate cast<>() usesdynamic_cast),
forces projects to compile with C++ RTTI turnedammd has a negative impact on state entry/exit
speed.

Especially for debugging it would be so much maseful being able to ask "In which state(s) are
you?". For this purpose it is possible to iteraterall activeinnermost states with

state_machine<>::state_begin() andstate_machine<>::state_end()
Dereferencing the returned iterator returns a esfes toconst
state_machine<>::state_base_type , the common base of all states. We can thus thrént

currently active state configuration as followse(siee Keyboard example for the complete code):

void DisplayStateConfiguration(const Keyboard & kb d)
{
char region ='a’;
for (
Keyboard::state_iterator pLeafState = kbd.state _begin();
pLeafState != kbd.state_end(); ++pLeafState)
{

std::cout << "Orthogonal region " << region << "
/I The following use of typeid assumes that
/I BOOST_STATECHART_USE_NATIVE_RTTI is defined

std::cout << typeid(*pLeafState).name() << "\ n";
++region;
}
}
If necessary, the outer states can be accessed with
state_machine<>::state_base_type::outer_state ptr() , Which returns a pointer
to const state_machine<>::state_base_type . When called on an outermost state this

function simply returns O.

State type information

To cut down on executable size some applicationst tveicompiled with C++ RTTI turned off. This
would render the ability to iterate over all actstates pretty much useless if it weren't for the
following two functions:

e static unspeci fi ed_t ype simple_state<>::static_type()
e unspecified_type

state_machine<>::state_base_type::dynamic_type() const
Both return a value that is comparable eeerator==() andstd::less<> . This alone would
be enough to implement tidsplayStateConfiguration function above without the help of

typeid but it is still somewhat cumbersome as a map eisised to associate the type information
values with the state names.

Custom state type information

2006/12/0:

The Boost Statechart Libra- Tutoria Page23 of 32

That's why the following functions are also prowddenly available when
BOOST_STATECHART_USE_NATIVE_RTTis not defined):

e template<class T >

static void simple_state<>::custom_static_type_ptr(constT *);
e template<class T >
static const T * simple_state<>::custom_static_type _ptr();

e template<class T >
const T * state_machine<>::
state_base_type::custom_dynamic_type ptr() const;

These allow us to directly associate arbitraryestgpe information with each state ...

...

int main()

{
NumLockOn::custom_static_type ptr("NumLockOn");
NumLockOff::custom_static_type_ptr("NumLockOff");
CapsLockOn::custom_static_type_ptr("CapsLockOn");
CapsLockOff::custom_static_type_ ptr("CapsLockOff ");
ScrollLockOn::custom_static_type_ptr("ScrollLock on");
ScrollLockOff::custom_static_type ptr("ScrollLoc kOff");

...
}

... and rewrite the display function as follows:

void DisplayStateConfiguration(const Keyboard & kb d)
{

char region ='a’;

for (
Keyboard::state_iterator pLeafState = kbd.state _begin();
pLeafState != kbd.state_end(); ++pLeafState)

{
std::cout << "Orthogonal region " << region << "
std::cout <<

pLeafState->custom_dynamic_type_ptr< char >() <<"\n";

++region;

}

}

Exception handling

Exceptions can be propagated from all user codepxXmm state destructors. Out of the box, thie
machine framework is configured for simple excapti@ndling and does not catch any of these
exceptions, so they are immediately propagateddstate machine client. A scope guard inside the
state_machine<> ensures that all state objects are destructedetife exception is caught by
client. The scope guard does not attempt to cgleait functions (se@wo stage exibelow) that
states might define as these could themselves tbtioar exceptions which would mask the original
exception. Consequently, if a state machine shdalsomething more sensible when exceptions are
thrown, it has to catch them before they are prafeinto the Boost.Statechart framework. ~

2006/12/0:

The Boost Statechart Libra- Tutoria Page24 of 32

exception handling scheme is often appropriatetlmatn lead to considerable code duplication itesta
machines where many actions can trigger excepti@iseed to be handled inside the state machine
(seeError handlingn the Rationale).

That's why exception handling can be customizealiin theExceptionTranslator parameter

of thestate_machine class template. Since the out-of-the box behasitwnot translate any
exceptions, the default argument for this paramsteunll_exception_translator A
state_machine<> subtype can be configured for advanced exceptmaling by specifying the
library-suppliedexception_translator<> instead. This way, the following happens when an
exception is propagated from user code:

1. The exception is caught inside the framework

2. In the catch block, aexception_thrown event is allocated on the stack

3. Also in the catch block, dmmediate dispatch of thexception_thrown event is
attempted. That is, possibly remaining events engiheue are dispatched only after the
exception has been handled successfully

4. If the exception was handled successfully, tateshachine returns to the client normally. If the
exception could not be handled successfully, tiggral exception is rethrown so that the client
of the state machine can handle the exception

On platforms with buggy exception handling implettag¢ions users would probably want to
implement their own model of tHexceptionTranslator concefgee als@iscriminating exceptior)s

Successful exception handling
An exception is considered handled successfully, if

e an appropriate reaction for te&ception_thrown event has been founand
o the state machine is in a stable state after #retiom has completed.

The second condition is important for scenarioa@ &in the next section. In these scenarios, tdte
machine is in the middle of a transition when tkeeption is handled. The machine would be left in
an invalid state, should the reaction simply diddae event without doing anything else.
exception_translator<> simply rethrows the original exception if the eptien handling was
unsuccessful. Just as with simple exception haggdimthis case a scope guard inside the
state_machine<> ensures that all state objects are destructedetdfe exception is caught by
client.

Which states can react to arexcepti on_t hr own event?

Short answer: If the state machine is stable wherekception is thrown, the state that caused the
exception is first tried for a reaction. Otherwibe outermostinstable states first tried for a reaction.

Longer answer: There are three scenarios:
1. Areact member function propagates an excepkiefore calling any of the reaction functions
or the action executed during an in-state reagifopagates an exception. The state that caused

the exception is first tried for a reaction, so filkowing machine will transit to Defective after
receiving an EvStart event:

2006/12/0:

The Boost Statechart Libra- Tutoria Page2t of 32

é Idle

. E EvStart()fthrow Std::runtime_error(U

exception_thrown

N4
(Defective)

2. A state entry action (constructor) propagatesxaeption:
o If there are no orthogonal regions, the direct ost&te of the state that caused the

exception is first tried for a reaction, so thddweling machine will transit to Defective
after trying to enter Stopped:

(Active \

H l 4 Stopped

Entry [throw std:runtime_error()

R

o

exception_thrown

\/
(Defective)

o If there are orthogonal regions, the outermwsttable states first tried for a reaction. Tl
outermost unstable state is found by first selgdtie direct outer state of the state that
caused the exception and then moving outward argiate is found that is unstable but
has no direct or indirect outer states that ar¢altes This more complex rule is neces:
because only reactions associated with the outémmssable state (or any of its direct or
indirect outer states) are able to bring the machack into a stable state. Consider the

following statechart:

2006/12/0:

The Boost Statechart Libra- Tutoria Page2€ of 32

' A ™
4 D \
®—()
- — — N
4 C)

. E Hentr‘y!throw std:runtime_error();

- J

exception_thrown

N
(F O

_

exception_thrown

-
W
(E

Whether this state machine will ultimately trarwitito E or F after initiation depends on
which of the two orthogonal regions is initiatexfi If the upper orthogonal region is
initiated first, the entry sequence is as folloAsD, B, (exception is thrown). Both D ai
B were successfully entered, so B is the outermostable state when the exception is
thrown and the machine will therefore transitiori-tdHowever, if the lower orthogonal
region is initiated first, the sequence is as f@HioA, B, (exception is thrown). D was
never entered so A is the outermost unstable sta® the exception is thrown and the
machine will therefore transition to E.
In practice these differences rarely matter ade¢gplt error recovery is adequate for most
state machines. However, since the sequence mitioit is clearly defined (orthogonal
region O is always initiated first, then regionridaso forth), usersan accurately control
when and where they want to handle exceptions
3. A transition action propagates an exception: ifhermost common outer state of the source
and the target state is first tried for a reactsmthe following machine will transit to Defective
after receiving an EvStartStop event:

2006/12/0:

The Boost Statechart Libra- Tutoria Page27 of 32

4 Active 7

@ > (T o

_

EvStartStop [throw std:runtime_error();
V
(’ Running)

exception_thrown

N4
(Defective)

_

As with a normal event, the dispatch algorithm withve outward to find a reaction if the first tried
state does not provide one (or if the reactionieitiyl returnedforward_event();). However,in
contrast to normal events, it will give up once ihas unsuccessfully tried an outermost stateso
the following machine wilhot transit to Defective after receiving an EvNumLocd$3ed event:

4 Active N

é NumLockOff
. E EviumLockPressed () / throw std: runtime_error();

- .

R

exception_thrown

N4
(Defective)

_

Instead, the machine is terminated and the origiregption rethrown.

Discriminating exceptions

Because thexception_thrown event is dispatched from within the catch block,san rethrow
and catch the exception in a custom reaction:

struct Defective : sc::simple_state<
Defective, Purifier > {};

2006/12/0:

The Boost Statechart Libra- Tutoria Page28 of 32

/I Pretend this is a state deeply nested in the Pur ifier
/I state machine
struct Idle : sc::simple_state< Idle, Purifier >

typedef mpl::list<
sc:.custom_reaction< EvStart >,
sc:.custom_reaction< sc::exception_thrown >
> reactions;

sc::result react(const EvStart &)

{

throw std::runtime_error("");
}
sc::result react(const sc::exception_thrown &)
{

try

{

t hr ow,
}

catch (const std::runtime_error &)

/I only std::runtime_errors will lead to a tr ansition
Il to Defective ...
return transit< Defective >();

}

catch (...)
/... all other exceptions are forwarded to our outer
/I state(s). The state machine is terminated and the
/I exception rethrown if the outer state(s) c an't

/I handle it either...
return forward_event();

}
/I Alternatively, if we want to terminate the m achine
/I immediately, we can also either rethrow or t hrow
/I a different exception.
}
3

Unfortunately, this idiom (using t hr ow; inside at r y block nested inside aat ch block) does

not work on at least one very popular compilerlf you have to use one of these platforms, you can
pass a customized exception translator class tst#ite machine class template. This will allow
you to generate different events depending onyibe of the exception.

Two stage exit
If a simple_state<> or state<> subtype declares a public member function withsilgyeature
void exit() then this function is called just before the stdigect is destructed. As explained

underError handlingn the Rationale, this is useful for two thingattivould otherwise be difficult or
cumbersome to achieve with destructors ¢

2006/12/0:

The Boost Statechart Libra- Tutoria Page2S of 32

1. To signal a failure in an exit action
2. To execute certain exit actioasly during a transition or a termination but not whiea state
machine object is destructed

A few points to consider before employiegit()

e There is no guarantee theatit() will be called:

o If the client destructs the state machine objethauit callingterminate() beforehan
then the currently active states are destructdaowitcallingexit() . This is necessary
because an exception that is possibly thrown fe@it{) could not be propagated on to
the state machine client

o exit() is not called when a previously executed actimppagated an exception and 1
exception has not (yet) been handled successfihig.is because a new exception that
could possibly be thrown fromxit() ~ would mask the original exception

e A state is considered exited, even ifaigt function propagated an exception. That is, the
object is inevitably destructed right after calliegt() , regardless of whethexit()
propagated an exception or not. A state machinégrord for advanced exception handling is
therefore always unstable while handling an exoepgpropagated from axit function

¢ In a state machine configured for advanced except@ndling the processing rules for an
exception event resulting from an exception progatyromexit() are analogous to the or
defined for exceptions propagated from state coogidrs. That is, the outermost unstable st:
first tried for a reaction and the dispatcher theves outward until an appropriate reaction is
found

Submachines & parameterized states

Submachines are to event-driven programming whadtions are to procedural programming,
reusable building blocks implementing often neefdedtionality. The associated UML notation is
entirely clear to me. It seems to be severely &thife.g. the same submachine cannot appear in
different orthogonal regions) and does not seeattount for obvious stuff like e.g. parameters.

Boost.Statechart is completely unaware of submashiuit they can be implemented quite nicely with
templates. Here, a submachine is used to impravedpy-paste implementation of the keyboard
machine discussed underthogonal states

enum LockType

{

NUM_LOCK,
CAPS LOCK,
SCROLL_LOCK

hy

template< LockType lockType >
struct Off;
struct Active : sc::simple_state<
Active, Keyboard, mpl::list<
Off< NUM_LOCK >, Off< CAPS_LOCK >, Off< SCROLL_LO CK>>>{}

template< LockType lockType >
struct EvPressed : sc::event< EvPressed< lockType > > {}

template< LockType lockType >

struct On : sc::simple_state<
On< lockType >, Active::orthogonal< lockType > >

2006/12/0:

The Boost Statechart Libra- Tutoria Page3C of 32

{

typedef sc::transition<
EvPressed< lockType >, Off< lockType > > reacti ons;
%

template< LockType lockType >
struct Off : sc::simple_state<
Off< lockType >, Active::orthogonal< lockType > >

{

typedef sc::transition<
EvPressed< lockType >, On< lockType > > reactio ns;
%

Asynchronous state machines
Why asynchronous state machines are necessary

As the name suggests, a synchronous state madadiicespes each event synchronously. This bef
is implemented by thstate_machine class template, whogeocess _event function only
returns after having executed all reactions (iniclgdhe ones provoked by internal events that astio
might have posted). This function is strictly n@®intrant (just like all other member functions, so
state_machine<> is not thread-safe). This makes it difficult farastate_machine<>

subtype objects to communicate via events in drbetional fashion correctlyeven in a single-
threaded program. For example, state machiAas in the middle of processing an external event.
Inside an action, it decides to send a new evestiatie machin8 (by callingB::process_event

()). It then "waits" for B to send back an answera/imost::function<> -like call-back, which
referenced\::process_event() and was passed as a data member of the eventvieigwdhile
Ais "waiting" for B to send back an ever;:process_event() has not yet returned from
processing the external event and as sodhasswers via the call-back;:process_event() is
unavoidably reentered. This all really happens in a singleaty that's why "wait" is in quotes.

How it works

Theasynchronous_state_machine class template has none of the member functians th
state_machine class template has. Moreovasynchronous_state_machine<> subtype
objects cannot even be created or destroyed dirdasitead, all these operations must be performed
through theScheduler object each asynchronous state machine is assoaigth. All these
Scheduler member functions only push an appropriate itemm ihé schedulers' queue and then
return immediately. A dedicated thread will latepghe items out of the queue to have them
processed.

Applications will usually first create ffo_scheduler<> object and then call
fifo_scheduler<>::create_processor<>() and
fifo_scheduler<>::initiate_processor() to schedule the creation and initiation of one
or moreasynchronous_state _machine<> subtype objects. Finally,
fifo_scheduler<>::operator()() is either called directly to let the machine(s) i the
current thread, or, laoost::function<> object referencingperator()() is passed to a new
boost::thread . Alternatively, the latter could also be done tigfter constructing the
fifo_scheduler<> object. In the following code, we are running atege machine in a new
boost::thread and the other in the main thread (see the PingBrample for the full source
code):

struct Waiting;

2006/12/0:

The Boost Statechart Libra- Tutoria Page31 of 32

struct Player :
sc::asynchronous_state_machine< Player, Waiting >

{
...

h
" ...

int main()
{
Il Create two schedulers that will wait for new e vents
/l when their event queue runs empty
sc::fifo_scheduler<> schedulerl(true);
sc::fifo_scheduler<> scheduler2(true);

/I Each player is serviced by its own scheduler
sc::fifo_scheduler<>::processor_handle playerl =
schedulerl.create_processor< Player >(/* ... * 1);
schedulerl.initiate_processor(playerl);
sc::fifo_scheduler<>::processor_handle player2 =
scheduler2.create_processor< Player >(/* ... * l);
scheduler2.initiate_processor(player2);

/l the initial event that will start the game
boost::intrusive_ptr< BallReturned > plinitialBall =
new BallReturned();

...
scheduler2.queue_event(player2, pinitialBall);
...

// ' Up until here no state machines exist yet. The y
I/l will be created when operator()() is called

// Run first scheduler in a new thread

boost::thread otherThread(boost::bind(
&sc::fifo_scheduler<>::operator(), &schedulerl, 0));

scheduler2(); // Run second scheduler in this thr ead

otherThread.join();

return O;

}

We could just as well use two boost::threads:

int main()

{
...

boost::thread thread1(boost::bind(

&sc::fifo_scheduler<>::operator(), &schedulerl, 0));
boost::thread thread2(boost::bind(

2006/12/0:

The Boost Statechart Libra- Tutoria Page32 of 32

&sc::fifo_scheduler<>::operator(), &scheduler2, 0));
/l do something else ...

thread1.join();
thread2.join();

return O;

}
Or, run both machines in the same thread:
int main()
sc::fifo_scheduler<> schedulerl(true);

sc::fifo_scheduler<>::processor_handle playerl =

schedulerl.create processor< Player >(/* ... * l);
sc::fifo_scheduler<>::processor_handle player2 =
schedulerl.create processor< Player >(/* ... * l);
...
schedulerl();
return O;
}
In all the examples abovifo scheduler<>::operator()() waits on an empty event que
and will only return after a call tiifo_scheduler<>::terminate() . ThePlayer state

machine calls this function on its scheduler objegtit before terminating.

™~ HTML
-~ 4,01 ﬁ
Revised 03 December, 2006

Copyright © 2003-2006\ndreas Huber D6nni

Distributed under the Boost Software License, \éerdi.0. (See accompanying ILICENSE_1_0.txt
or copy athttp://www.boost.org/LICENSE_1_0)

2006/12/0:

