
Perl version 5.8.8 documentation - ExtUtils::MakeMaker::FAQ

Page 1http://perldoc.perl.org

NAME
ExtUtils::MakeMaker::FAQ - Frequently Asked Questions About MakeMaker

DESCRIPTION
FAQs, tricks and tips for ExtUtils::MakeMaker.

Module Installation
How do I keep from installing man pages?

Recent versions of MakeMaker will only install man pages on Unix like
 operating systems.

For an individual module:

 perl Makefile.PL INSTALLMAN1DIR=none INSTALLMAN3DIR=none

If you want to suppress man page installation for all modules you have
 to reconfigure Perl and
tell it 'none' when it asks where to install
 man pages.

How do I use a module without installing it?

Two ways. One is to build the module normally...

 perl Makefile.PL
 make

...and then set the PERL5LIB environment variable to point at the
 blib/lib and blib/arch
directories.

The other is to install the module in a temporary location.

 perl Makefile.PL PREFIX=~/tmp LIB=~/tmp/lib/perl

And then set PERL5LIB to ~/tmp/lib/perl. This works well when you have
 multiple modules to
work with. It also ensures that the module goes
 through its full installation process which may
modify it.

Philosophy and History
Why not just use <insert other build config tool here>?

Why did MakeMaker reinvent the build configuration wheel? Why not
 just use autoconf or
automake or ppm or Ant or ...

There are many reasons, but the major one is cross-platform
 compatibility.

Perl is one of the most ported pieces of software ever. It works on
 operating systems I've
never even heard of (see perlport for details).
 It needs a build tool that can work on all those
platforms and with
 any wacky C compilers and linkers they might have.

No such build tool exists. Even make itself has wildly different
 dialects. So we have to build
our own.

What is Module::Build and how does it relate to MakeMaker?

Module::Build is a project by Ken Williams to supplant MakeMaker.
 Its primary advantages
are:

* pure perl. no make, no shell commands

* easier to customize

* cleaner internals

* less cruft

Module::Build is the official heir apparent to MakeMaker and we
 encourage people to work on
M::B rather than spending time adding features
 to MakeMaker.

Perl version 5.8.8 documentation - ExtUtils::MakeMaker::FAQ

Page 2http://perldoc.perl.org

Module Writing
How do I keep my $VERSION up to date without resetting it manually?

Often you want to manually set the $VERSION in the main module
 distribution because this is
the version that everybody sees on CPAN
 and maybe you want to customize it a bit. But for all
the other
 modules in your dist, $VERSION is really just bookkeeping and all that's
 important is
it goes up every time the module is changed. Doing this
 by hand is a pain and you often
forget.

Simplest way to do it automatically is to use your version control
 system's revision number
(you are using version control, right?).

In CVS, RCS and SVN you use $Revision$ (see the documentation of your
 version control
system for details) writing it like so:

 $VERSION = sprintf "%d.%03d", q$Revision$ =~ /(\d+)/g;

Every time the file is checked in the $Revision$ will be updated,
 updating your $VERSION.

In CVS version 1.9 is followed by 1.10. Since CPAN compares version
 numbers numerically
we use a sprintf() to convert 1.9 to 1.009 and
 1.10 to 1.010 which compare properly.

If branches are involved (ie. $Revision: 1.5.3.4$) its a little more
 complicated.

 # must be all on one line or MakeMaker will get confused.
 $VERSION = do { my @r = (q$Revision$ =~ /\d+/g); sprintf
"%d."."%03d" x $#r, @r };

What's this META.yml thing and how did it get in my MANIFEST?!

META.yml is a module meta-data file pioneered by Module::Build and
 automatically generated
as part of the 'distdir' target (and thus
 'dist'). See "Module Meta-Data" in ExtUtils::MakeMaker.

To shut off its generation, pass the NO_META flag to WriteMakefile().

XS
How to I prevent "object version X.XX does not match bootstrap parameter Y.YY" errors?

XS code is very sensitive to the module version number and will
 complain if the version
number in your Perl module doesn't match. If
 you change your module's version # without
reruning Makefile.PL the old
 version number will remain in the Makefile causing the XS code
to be built
 with the wrong number.

To avoid this, you can force the Makefile to be rebuilt whenever you
 change the module
containing the version number by adding this to your
 WriteMakefile() arguments.

 depend => { '$(FIRST_MAKEFILE)' => '$(VERSION_FROM)' }

How do I make two or more XS files coexist in the same directory?

Sometimes you need to have two and more XS files in the same package.
 One way to go is to
put them into separate directories, but sometimes
 this is not the most suitable solution. The
following technique allows
 you to put two (and more) XS files in the same directory.

Let's assume that we have a package Cool::Foo, which includes Cool::Foo and
Cool::Bar modules each having a separate XS
 file. First we use the following Makefile.PL:

 use ExtUtils::MakeMaker;

 WriteMakefile(
 NAME		 => 'Cool::Foo',
 VERSION_FROM	 => 'Foo.pm',
 OBJECT => q/$(O_FILES)/,
 # ... other attrs ...
);

Perl version 5.8.8 documentation - ExtUtils::MakeMaker::FAQ

Page 3http://perldoc.perl.org

Notice the OBJECT attribute. MakeMaker generates the following
 variables in Makefile:

 # Handy lists of source code files:
 XS_FILES= Bar.xs \
 	 Foo.xs
 C_FILES = Bar.c \
 	 Foo.c
 O_FILES = Bar.o \
 	 Foo.o

Therefore we can use the O_FILES variable to tell MakeMaker to use
 these objects into the
shared library.

That's pretty much it. Now write Foo.pm and Foo.xs, Bar.pm
 and Bar.xs, where Foo.pm
bootstraps the shared library and Bar.pm simply loading Foo.pm.

The only issue left is to how to bootstrap Bar.xs. This is done
 from Foo.xs:

 MODULE = Cool::Foo PACKAGE = Cool::Foo

 BOOT:
 # boot the second XS file
 boot_Cool__Bar(aTHX_ cv);

If you have more than two files, this is the place where you should
 boot extra XS files from.

The following four files sum up all the details discussed so far.

 Foo.pm:

 package Cool::Foo;

 require DynaLoader;

 our @ISA = qw(DynaLoader);
 our $VERSION = '0.01';
 bootstrap Cool::Foo $VERSION;

 1;

 Bar.pm:

 package Cool::Bar;

 use Cool::Foo; # bootstraps Bar.xs

 1;

 Foo.xs:

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 MODULE = Cool::Foo PACKAGE = Cool::Foo

 BOOT:
 # boot the second XS file
 boot_Cool__Bar(aTHX_ cv);

Perl version 5.8.8 documentation - ExtUtils::MakeMaker::FAQ

Page 4http://perldoc.perl.org

 MODULE = Cool::Foo PACKAGE = Cool::Foo PREFIX = cool_foo_

 void
 cool_foo_perl_rules()

 CODE:
 fprintf(stderr, "Cool::Foo says: Perl Rules\n");

 Bar.xs:

 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 MODULE = Cool::Bar PACKAGE = Cool::Bar PREFIX = cool_bar_

 void
 cool_bar_perl_rules()

 CODE:
 fprintf(stderr, "Cool::Bar says: Perl Rules\n");

And of course a very basic test:

 test.pl:

 use Test;
 BEGIN { plan tests => 1 };
 use Cool::Foo;
 use Cool::Bar;
 Cool::Foo::perl_rules();
 Cool::Bar::perl_rules();
 ok 1;

This tip has been brought to you by Nick Ing-Simmons and Stas Bekman.

PATCHING
If you have a question you'd like to see added to the FAQ (whether or
 not you have the answer)
please send it to makemaker@perl.org.

AUTHOR
The denizens of makemaker@perl.org.

SEE ALSO
ExtUtils::MakeMaker

