
Perl version 5.8.8 documentation - Shell

Page 1http://perldoc.perl.org

NAME
Shell - run shell commands transparently within perl

SYNOPSIS
 use Shell qw(cat ps cp);
 $passwd = cat('</etc/passwd');
 @pslines = ps('-ww'),
 cp("/etc/passwd", "/tmp/passwd");

 # object oriented
 my $sh = Shell->new;
 print $sh->ls('-l');

DESCRIPTION
Caveats

This package is included as a show case, illustrating a few Perl features.
 It shouldn't be used for
production programs. Although it does provide a simple interface for obtaining the standard output of
arbitrary commands,
 there may be better ways of achieving what you need.

Running shell commands while obtaining standard output can be done with the qx/STRING/
operator, or by calling open with a filename expression that
 ends with |, giving you the option to
process one line at a time.
 If you don't need to process standard output at all, you might use system

(in preference of doing a print with the collected standard output).

Since Shell.pm and all of the aforementioned techniques use your system's
 shell to call some local
command, none of them is portable across different systems. Note, however, that there are several
built in functions and library packages providing portable implementations of functions operating
 on
files, such as: glob, link and unlink, mkdir and rmdir, rename, File::Compare,
File::Copy, File::Find etc.

Using Shell.pm while importing foo creates a subroutine foo in the
 namespace of the importing
package. Calling foo with arguments arg1, arg2,... results in a shell command foo arg1
arg2..., where the function name and the arguments are joined with a blank. (See the subsection
on Escaping magic characters.) Since the result is essentially a command
 line to be passed to the
shell, your notion of arguments to the Perl
 function is not necessarily identical to what the shell treats
as a
 command line token, to be passed as an individual argument to the program.
 Furthermore, note
that this implies that foo is callable by file name
 only, which frequently depends on the setting of the
program's environment.

Creating a Shell object gives you the opportunity to call any command
 in the usual OO notation
without requiring you to announce it in the use Shell statement. Don't assume any additional
semantics being
 associated with a Shell object: in no way is it similar to a shell
 process with its
environment or current working directory or any
 other setting.

Escaping Magic Characters
It is, in general, impossible to take care of quoting the shell's
 magic characters. For some obscure
reason, however, Shell.pm quotes
 apostrophes (') and backslashes (\) on UNIX, and spaces and

quotes (") on Windows.

Configuration
If you set $Shell::capture_stderr to true, the module will attempt to
 capture the standard error output
of the process as well. This is
 done by adding 2>&1 to the command line, so don't try this on
 a system
not supporting this redirection.

If you set $Shell::raw to true no quoting whatsoever is done.

Perl version 5.8.8 documentation - Shell

Page 2http://perldoc.perl.org

BUGS
Quoting should be off by default.

It isn't possible to call shell built in commands, but it can be
 done by using a workaround, e.g. shell(
'-c', 'set').

Capturing standard error does not work on some systems (e.g. VMS).

AUTHOR
 Date: Thu, 22 Sep 94 16:18:16 -0700
 Message-Id: <9409222318.AA17072@scalpel.netlabs.com>
 To: perl5-porters@isu.edu
 From: Larry Wall <lwall@scalpel.netlabs.com>
 Subject: a new module I just wrote

Here's one that'll whack your mind a little out.

 #!/usr/bin/perl

 use Shell;

 $foo = echo("howdy", "<funny>", "world");
 print $foo;

 $passwd = cat("</etc/passwd");
 print $passwd;

 sub ps;
 print ps -ww;

 cp("/etc/passwd", "/etc/passwd.orig");

That's maybe too gonzo. It actually exports an AUTOLOAD to the current
 package (and uncovered a
bug in Beta 3, by the way). Maybe the usual
 usage should be

 use Shell qw(echo cat ps cp);

Larry Wall

Changes by Jenda@Krynicky.cz and Dave Cottle <d.cottle@csc.canterbury.ac.nz>.

Changes for OO syntax and bug fixes by Casey West <casey@geeknest.com>.

$Shell::raw and pod rewrite by Wolfgang Laun.

