
Perl version 5.8.8 documentation - perlintern

Page 1http://perldoc.perl.org

NAME
perlintern - autogenerated documentation of purely internal
 Perl functions

DESCRIPTION
This file is the autogenerated documentation of functions in the
 Perl interpreter that are documented
using Perl's internal documentation
 format but are not marked as part of the Perl API. In other words,
they are not for use in extensions!

CV reference counts and CvOUTSIDE
CvWEAKOUTSIDE

Each CV has a pointer, CvOUTSIDE(), to its lexically enclosing
 CV (if any). Because
pointers to anonymous sub prototypes are
 stored in & pad slots, it is a possible to get a
circular reference,
 with the parent pointing to the child and vice-versa. To avoid the

ensuing memory leak, we do not increment the reference count of the CV
 pointed to by
CvOUTSIDE in the one specific instance that the parent
 has a & pad slot pointing back
to us. In this case, we set the CvWEAKOUTSIDE flag in the child. This allows us to
determine under what
 circumstances we should decrement the refcount of the parent
when freeing
 the child.

There is a further complication with non-closure anonymous subs (i.e. those
 that do
not refer to any lexicals outside that sub). In this case, the
 anonymous prototype is
shared rather than being cloned. This has the
 consequence that the parent may be
freed while there are still active
 children, eg

 BEGIN { $a = sub { eval '$x' } }

In this case, the BEGIN is freed immediately after execution since there
 are no active
references to it: the anon sub prototype has CvWEAKOUTSIDE set since it's not a
closure, and $a points to the same
 CV, so it doesn't contribute to BEGIN's refcount
either. When $a is
 executed, the eval '$x' causes the chain of CvOUTSIDEs to be
followed,
 and the freed BEGIN is accessed.

To avoid this, whenever a CV and its associated pad is freed, any & entries in the pad
are explicitly removed from the pad, and if the
 refcount of the pointed-to anon sub is
still positive, then that
 child's CvOUTSIDE is set to point to its grandparent. This will
only
 occur in the single specific case of a non-closure anon prototype
 having one or
more active references (such as $a above).

One other thing to consider is that a CV may be merely undefined
 rather than freed, eg
undef &foo. In this case, its refcount may
 not have reached zero, but we still delete
its pad and its CvROOT etc.
 Since various children may still have their CvOUTSIDE
pointing at this
 undefined CV, we keep its own CvOUTSIDE for the time being, so that

the chain of lexical scopes is unbroken. For example, the following
 should print 123:

 my $x = 123;
 sub tmp { sub { eval '$x' } }
 my $a = tmp();
 undef &tmp;
 print $a->();

	 bool	 CvWEAKOUTSIDE(CV *cv)

Functions in file pad.h
CX_CURPAD_SAVE

Save the current pad in the given context block structure.

	 void	 CX_CURPAD_SAVE(struct context)

Perl version 5.8.8 documentation - perlintern

Page 2http://perldoc.perl.org

CX_CURPAD_SV

Access the SV at offset po in the saved current pad in the given
 context block structure
(can be used as an lvalue).

	 SV *	 CX_CURPAD_SV(struct context, PADOFFSET po)

PAD_BASE_SV

Get the value from slot po in the base (DEPTH=1) pad of a padlist

	 SV *	 PAD_BASE_SV(PADLIST padlist, PADOFFSET po)

PAD_CLONE_VARS

|CLONE_PARAMS* param
 Clone the state variables associated with running and
compiling pads.

	 void	 PAD_CLONE_VARS(PerlInterpreter *proto_perl \)

PAD_COMPNAME_FLAGS

Return the flags for the current compiling pad name
 at offset po. Assumes a valid slot
entry.

	 U32	 PAD_COMPNAME_FLAGS(PADOFFSET po)

PAD_COMPNAME_GEN

The generation number of the name at offset po in the current
 compiling pad (lvalue).
Note that SvCUR is hijacked for this purpose.

	 STRLEN	 PAD_COMPNAME_GEN(PADOFFSET po)

PAD_COMPNAME_GEN_set

Sets the generation number of the name at offset po in the current
 ling pad (lvalue) to
gen. Note that SvCUR_set is hijacked for this purpose.

	 STRLEN	 PAD_COMPNAME_GEN_set(PADOFFSET po, int gen)

PAD_COMPNAME_OURSTASH

Return the stash associated with an our variable.
 Assumes the slot entry is a valid
our lexical.

	 HV *	 PAD_COMPNAME_OURSTASH(PADOFFSET po)

PAD_COMPNAME_PV

Return the name of the current compiling pad name
 at offset po. Assumes a valid slot
entry.

	 char *	 PAD_COMPNAME_PV(PADOFFSET po)

PAD_COMPNAME_TYPE

Return the type (stash) of the current compiling pad name at offset po. Must be a valid
name. Returns null if not typed.

	 HV *	 PAD_COMPNAME_TYPE(PADOFFSET po)

PAD_DUP

Clone a padlist.

Perl version 5.8.8 documentation - perlintern

Page 3http://perldoc.perl.org

	 void	 PAD_DUP(PADLIST dstpad, PADLIST srcpad, CLONE_PARAMS*
param)

PAD_RESTORE_LOCAL

Restore the old pad saved into the local variable opad by PAD_SAVE_LOCAL()

	 void	 PAD_RESTORE_LOCAL(PAD *opad)

PAD_SAVE_LOCAL

Save the current pad to the local variable opad, then make the
 current pad equal to
npad

	 void	 PAD_SAVE_LOCAL(PAD *opad, PAD *npad)

PAD_SAVE_SETNULLPAD

Save the current pad then set it to null.

	 void	 PAD_SAVE_SETNULLPAD()

PAD_SETSV

Set the slot at offset po in the current pad to sv

	 SV *	 PAD_SETSV(PADOFFSET po, SV* sv)

PAD_SET_CUR

Set the current pad to be pad n in the padlist, saving
 the previous current pad. NB
currently this macro expands to a string too
 long for some compilers, so it's best to
replace it with

 SAVECOMPPAD();
 PAD_SET_CUR_NOSAVE(padlist,n);

	 void	 PAD_SET_CUR(PADLIST padlist, I32 n)

PAD_SET_CUR_NOSAVE

like PAD_SET_CUR, but without the save

	 void	 PAD_SET_CUR_NOSAVE(PADLIST padlist, I32 n)

PAD_SV

Get the value at offset po in the current pad

	 void	 PAD_SV(PADOFFSET po)

PAD_SVl

Lightweight and lvalue version of PAD_SV.
 Get or set the value at offset po in the
current pad.
 Unlike PAD_SV, does not print diagnostics with -DX.
 For internal use only.

	 SV *	 PAD_SVl(PADOFFSET po)

SAVECLEARSV

Clear the pointed to pad value on scope exit. (i.e. the runtime action of 'my')

	 void	 SAVECLEARSV(SV **svp)

SAVECOMPPAD

Perl version 5.8.8 documentation - perlintern

Page 4http://perldoc.perl.org

save PL_comppad and PL_curpad

	 void	 SAVECOMPPAD()

SAVEPADSV

Save a pad slot (used to restore after an iteration)

XXX DAPM it would make more sense to make the arg a PADOFFSET
 void	
SAVEPADSV(PADOFFSET po)

Functions in file pp_ctl.c
find_runcv

Locate the CV corresponding to the currently executing sub or eval.
 If db_seqp is
non_null, skip CVs that are in the DB package and populate
 *db_seqp with the cop
sequence number at the point that the DB:: code was
 entered. (allows debuggers to
eval in the scope of the breakpoint rather
 than in the scope of the debugger itself).

	 CV*	 find_runcv(U32 *db_seqp)

Global Variables
PL_DBsingle

When Perl is run in debugging mode, with the -d switch, this SV is a
 boolean which
indicates whether subs are being single-stepped.
 Single-stepping is automatically
turned on after every step. This is the C
 variable which corresponds to Perl's
$DB::single variable. See PL_DBsub.

	 SV *	 PL_DBsingle

PL_DBsub

When Perl is run in debugging mode, with the -d switch, this GV contains
 the SV which
holds the name of the sub being debugged. This is the C
 variable which corresponds
to Perl's $DB::sub variable. See PL_DBsingle.

	 GV *	 PL_DBsub

PL_DBtrace

Trace variable used when Perl is run in debugging mode, with the -d
 switch. This is the
C variable which corresponds to Perl's $DB::trace
 variable. See PL_DBsingle.

	 SV *	 PL_DBtrace

PL_dowarn

The C variable which corresponds to Perl's $^W warning variable.

	 bool	 PL_dowarn

PL_last_in_gv

The GV which was last used for a filehandle input operation. (<FH>)

	 GV*	 PL_last_in_gv

PL_ofs_sv

The output field separator - $, in Perl space.

	 SV*	 PL_ofs_sv

Perl version 5.8.8 documentation - perlintern

Page 5http://perldoc.perl.org

PL_rs

The input record separator - $/ in Perl space.

	 SV*	 PL_rs

GV Functions
is_gv_magical

Returns TRUE if given the name of a magical GV.

Currently only useful internally when determining if a GV should be
 created even in
rvalue contexts.

flags is not used at present but available for future extension to
 allow selecting
particular classes of magical variable.

Currently assumes that name is NUL terminated (as well as len being valid).
 This
assumption is met by all callers within the perl core, which all pass
 pointers returned
by SvPV.

	 bool	 is_gv_magical(char *name, STRLEN len, U32 flags)

IO Functions
start_glob

Function called by do_readline to spawn a glob (or do the glob inside
 perl on VMS).
This code used to be inline, but now perl uses File::Glob
 this glob starter is only
used by miniperl during the build process.
 Moving it away shrinks pp_hot.c; shrinking
pp_hot.c helps speed perl up.

	 PerlIO*	 start_glob(SV* pattern, IO *io)

Pad Data Structures
CvPADLIST

CV's can have CvPADLIST(cv) set to point to an AV.

For these purposes "forms" are a kind-of CV, eval""s are too (except they're
 not
callable at will and are always thrown away after the eval"" is done
 executing).

XSUBs don't have CvPADLIST set - dXSTARG fetches values from PL_curpad,
 but
that is really the callers pad (a slot of which is allocated by
 every entersub).

The CvPADLIST AV has does not have AvREAL set, so REFCNT of component items

is managed "manual" (mostly in pad.c) rather than normal av.c rules.
 The items in the
AV are not SVs as for a normal AV, but other AVs:

0'th Entry of the CvPADLIST is an AV which represents the "names" or rather
 the
"static type information" for lexicals.

The CvDEPTH'th entry of CvPADLIST AV is an AV which is the stack frame at that

depth of recursion into the CV.
 The 0'th slot of a frame AV is an AV which is @_.
 other
entries are storage for variables and op targets.

During compilation: PL_comppad_name is set to the names AV. PL_comppad is set to
the frame AV for the frame CvDEPTH == 1. PL_curpad is set to the body of the frame
AV (i.e. AvARRAY(PL_comppad)).

During execution, PL_comppad and PL_curpad refer to the live
 frame of the currently
executing sub.

Iterating over the names AV iterates over all possible pad
 items. Pad slots that are
SVs_PADTMP (targets/GVs/constants) end up having
 &PL_sv_undef "names" (see
pad_alloc()).

Only my/our variable (SVs_PADMY/SVs_PADOUR) slots get valid names.
 The rest

Perl version 5.8.8 documentation - perlintern

Page 6http://perldoc.perl.org

are op targets/GVs/constants which are statically allocated
 or resolved at compile time.
These don't have names by which they
 can be looked up from Perl code at run time
through eval"" like
 my/our variables can be. Since they can't be looked up by "name"

but only by their index allocated at compile time (which is usually
 in PL_op->op_targ),
wasting a name SV for them doesn't make sense.

The SVs in the names AV have their PV being the name of the variable.
 NV+1..IV
inclusive is a range of cop_seq numbers for which the name is
 valid. For typed lexicals
name SV is SVt_PVMG and SvSTASH points at the
 type. For our lexicals, the type is
SVt_PVGV, and GvSTASH points at the
 stash of the associated global (so that
duplicate our declarations in the
 same package can be detected). SvCUR is
sometimes hijacked to
 store the generation number during compilation.

If SvFAKE is set on the name SV then slot in the frame AVs are
 a REFCNT'ed
references to a lexical from "outside". In this case,
 the name SV does not have a
cop_seq range, since it is in scope
 throughout.

If the 'name' is '&' the corresponding entry in frame AV
 is a CV representing a possible
closure.
 (SvFAKE and name of '&' is not a meaningful combination currently but could

become so if my sub foo {} is implemented.)

The flag SVf_PADSTALE is cleared on lexicals each time the my() is executed,
 and
set on scope exit. This allows the 'Variable $x is not available' warning
 to be generated
in evals, such as

 { my $x = 1; sub f { eval '$x'} } f();

	 AV *	 CvPADLIST(CV *cv)

cv_clone

Clone a CV: make a new CV which points to the same code etc, but which
 has a
newly-created pad built by copying the prototype pad and capturing
 any outer lexicals.

	 CV*	 cv_clone(CV* proto)

cv_dump

dump the contents of a CV

	 void	 cv_dump(const CV *cv, const char *title)

do_dump_pad

Dump the contents of a padlist

	 void	 do_dump_pad(I32 level, PerlIO *file, PADLIST *padlist, int
 full)

intro_my

"Introduce" my variables to visible status.

	 U32	 intro_my()

pad_add_anon

Add an anon code entry to the current compiling pad

	 PADOFFSET	 pad_add_anon(SV* sv, OPCODE op_type)

pad_add_name

Create a new name in the current pad at the specified offset.
 If typestash is valid,
the name is for a typed lexical; set the
 name's stash to that value.
 If ourstash is

Perl version 5.8.8 documentation - perlintern

Page 7http://perldoc.perl.org

valid, it's an our lexical, set the name's
 GvSTASH to that value

Also, if the name is @.. or %.., create a new array or hash for that slot

If fake, it means we're cloning an existing entry

	 PADOFFSET	 pad_add_name(char *name, HV* typestash, HV* ourstash,
 bool clone)

pad_alloc

Allocate a new my or tmp pad entry. For a my, simply push a null SV onto
 the end of
PL_comppad, but for a tmp, scan the pad from PL_padix upwards
 for a slot which has
no name and no active value.

	 PADOFFSET	 pad_alloc(I32 optype, U32 tmptype)

pad_block_start

Update the pad compilation state variables on entry to a new block

	 void	 pad_block_start(int full)

pad_check_dup

Check for duplicate declarations: report any of:
 * a my in the current scope with the
same name;
 * an our (anywhere in the pad) with the same name and the same stash

as ourstash is_our indicates that the name to check is an 'our' declaration

	 void	 pad_check_dup(char* name, bool is_our, HV* ourstash)

pad_findlex

Find a named lexical anywhere in a chain of nested pads. Add fake entries
 in the inner
pads if it's found in an outer one. innercv is the CV *inside*
 the chain of outer CVs to
be searched. If newoff is non-null, this is a
 run-time cloning: don't add fake entries, just
find the lexical and add a
 ref to it at newoff in the current pad.

	 PADOFFSET	 pad_findlex(const char* name, PADOFFSET newoff, const
 CV* innercv)

pad_findmy

Given a lexical name, try to find its offset, first in the current pad,
 or failing that, in the
pads of any lexically enclosing subs (including
 the complications introduced by eval). If
the name is found in an outer pad,
 then a fake entry is added to the current pad.

Returns the offset in the current pad, or NOT_IN_PAD on failure.

	 PADOFFSET	 pad_findmy(char* name)

pad_fixup_inner_anons

For any anon CVs in the pad, change CvOUTSIDE of that CV from
 old_cv to new_cv if
necessary. Needed when a newly-compiled CV has to be
 moved to a pre-existing CV
struct.

	 void	 pad_fixup_inner_anons(PADLIST *padlist, CV *old_cv, CV
*new_cv)

pad_free

Free the SV at offset po in the current pad.

	 void	 pad_free(PADOFFSET po)

Perl version 5.8.8 documentation - perlintern

Page 8http://perldoc.perl.org

pad_leavemy

Cleanup at end of scope during compilation: set the max seq number for
 lexicals in this
scope and warn of any lexicals that never got introduced.

	 void	 pad_leavemy()

pad_new

Create a new compiling padlist, saving and updating the various global
 vars at the
same time as creating the pad itself. The following flags
 can be OR'ed together:

 padnew_CLONE	 this pad is for a cloned CV
 padnew_SAVE		 save old globals
 padnew_SAVESUB	 also save extra stuff for start of sub

	 PADLIST*	 pad_new(int flags)

pad_push

Push a new pad frame onto the padlist, unless there's already a pad at
 this depth, in
which case don't bother creating a new one.
 If has_args is true, give the new pad an
@_ in slot zero.

	 void	 pad_push(PADLIST *padlist, int depth, int has_args)

pad_reset

Mark all the current temporaries for reuse

	 void	 pad_reset()

pad_setsv

Set the entry at offset po in the current pad to sv.
 Use the macro PAD_SETSV() rather
than calling this function directly.

	 void	 pad_setsv(PADOFFSET po, SV* sv)

pad_swipe

Abandon the tmp in the current pad at offset po and replace with a
 new one.

	 void	 pad_swipe(PADOFFSET po, bool refadjust)

pad_tidy

Tidy up a pad after we've finished compiling it:
 * remove most stuff from the pads of
anonsub prototypes;
 * give it a @_;
 * mark tmps as such.

	 void	 pad_tidy(padtidy_type type)

pad_undef

Free the padlist associated with a CV.
 If parts of it happen to be current, we null the
relevant
 PL_*pad* global vars so that we don't have any dangling references left.
 We
also repoint the CvOUTSIDE of any about-to-be-orphaned
 inner subs to the outer of
this cv.

(This function should really be called pad_free, but the name was already
 taken)

	 void	 pad_undef(CV* cv)

Perl version 5.8.8 documentation - perlintern

Page 9http://perldoc.perl.org

Stack Manipulation Macros
djSP

Declare Just SP. This is actually identical to dSP, and declares
 a local copy of perl's
stack pointer, available via the SP macro.
 See SP. (Available for backward source code
compatibility with the
 old (Perl 5.005) thread model.)

		 djSP;

LVRET

True if this op will be the return value of an lvalue subroutine

SV Manipulation Functions
report_uninit

Print appropriate "Use of uninitialized variable" warning

	 void	 report_uninit()

sv_add_arena

Given a chunk of memory, link it to the head of the list of arenas,
 and split it into a list
of free SVs.

	 void	 sv_add_arena(char* ptr, U32 size, U32 flags)

sv_clean_all

Decrement the refcnt of each remaining SV, possibly triggering a
 cleanup. This
function may have to be called multiple times to free
 SVs which are in complex
self-referential hierarchies.

	 I32	 sv_clean_all()

sv_clean_objs

Attempt to destroy all objects not yet freed

	 void	 sv_clean_objs()

sv_free_arenas

Deallocate the memory used by all arenas. Note that all the individual SV
 heads and
bodies within the arenas must already have been freed.

	 void	 sv_free_arenas()

AUTHORS
The autodocumentation system was originally added to the Perl core by
 Benjamin Stuhl.
Documentation is by whoever was kind enough to
 document their functions.

SEE ALSO
perlguts(1), perlapi(1)

