
Perl version 5.8.8 documentation - threads::shared

Page 1http://perldoc.perl.org

NAME
threads::shared - Perl extension for sharing data structures between threads

SYNOPSIS
 use threads;
 use threads::shared;

 my $var : shared;
 $var = $scalar_value;
 $var = $shared_ref_value;
 $var = &share($simple_unshared_ref_value);
 $var = &share(new Foo);

 my($scalar, @array, %hash);
 share($scalar);
 share(@array);
 share(%hash);
 my $bar = &share([]);
 $hash{bar} = &share({});

 { lock(%hash); ... }

 cond_wait($scalar);
 cond_timedwait($scalar, time() + 30);
 cond_broadcast(@array);
 cond_signal(%hash);

 my $lockvar : shared;
 # condition var != lock var
 cond_wait($var, $lockvar);
 cond_timedwait($var, time()+30, $lockvar);

DESCRIPTION
By default, variables are private to each thread, and each newly created
 thread gets a private copy of
each existing variable. This module allows
 you to share variables across different threads (and
pseudoforks on Win32).
 It is used together with the threads module.

EXPORT
share, cond_wait, cond_timedwait, cond_signal, cond_broadcast

Note that if this module is imported when threads has not yet been
 loaded, then these functions all
become no-ops. This makes it possible
 to write modules that will work in both threaded and
non-threaded
 environments.

FUNCTIONS
share VARIABLE

share takes a value and marks it as shared. You can share a scalar,
 array, hash, scalar ref,
array ref or hash ref. share will return
 the shared rvalue but always as a reference.

share will traverse up references exactly one level. share(\$a) is equivalent to
share($a), while share(\\$a) is not.
 This means that you must create nested shared data
structures by first
 creating individual shared leaf notes, then adding them to a shared hash
 or
array.

A variable can also be marked as shared at compile time by using the shared attribute: my

Perl version 5.8.8 documentation - threads::shared

Page 2http://perldoc.perl.org

$var : shared.

If you want to share a newly created reference unfortunately you
 need to use &share([])
and &share({}) syntax due to problems
 with Perl's prototyping.

The only values that can be assigned to a shared scalar are other scalar
 values, or shared
refs, eg

 my $var : shared;
 $var = 1; # ok
 $var = &share([]); # ok
 $var = []; # error
 $var = A->new; # error
 $var = &share(A->new); # ok as long as the A object is not nested

Note that it is often not wise to share an object unless the class itself
 has been written to
support sharing; for example, an object's destructor
 may get called multiple times, one for
each thread's scope exit.

lock VARIABLE

lock places a lock on a variable until the lock goes out of scope.
 If the variable is locked by
another thread, the lock call will
 block until it's available. lock is recursive, so multiple calls

to lock are safe -- the variable will remain locked until the
 outermost lock on the variable
goes out of scope.

If a container object, such as a hash or array, is locked, all the
 elements of that container are
not locked. For example, if a thread
 does a lock @a, any other thread doing a
lock($a[12]) won't block.

lock will traverse up references exactly one level. lock(\$a) is equivalent to lock($a),
while lock(\\$a) is not.

Note that you cannot explicitly unlock a variable; you can only wait
 for the lock to go out of
scope. If you need more fine-grained
 control, see Thread::Semaphore.

cond_wait VARIABLE

cond_wait CONDVAR, LOCKVAR

The cond_wait function takes a locked variable as a parameter,
 unlocks the variable, and
blocks until another thread does a cond_signal or cond_broadcast for that same locked
variable.
 The variable that cond_wait blocked on is relocked after the cond_wait is
satisfied. If there are multiple threads cond_waiting on the same variable, all but one will
reblock waiting
 to reacquire the lock on the variable. (So if you're only using cond_wait for
synchronisation, give up the lock as soon as
 possible). The two actions of unlocking the
variable and entering the
 blocked wait state are atomic, the two actions of exiting from the

blocked wait state and relocking the variable are not.

In its second form, cond_wait takes a shared, unlocked variable
 followed by a shared,
locked variable. The second variable is
 unlocked and thread execution suspended until
another thread signals
 the first variable.

It is important to note that the variable can be notified even if
 no thread cond_signal or
cond_broadcast on the variable.
 It is therefore important to check the value of the variable
and
 go back to waiting if the requirement is not fulfilled. For example,
 to pause until a shared
counter drops to zero:

 { lock($counter); cond_wait($count) until $counter == 0; }

cond_timedwait VARIABLE, ABS_TIMEOUT

cond_timedwait CONDVAR, ABS_TIMEOUT, LOCKVAR

In its two-argument form, cond_timedwait takes a locked variable
 and an absolute timeout
as parameters, unlocks the variable, and blocks
 until the timeout is reached or another thread

Perl version 5.8.8 documentation - threads::shared

Page 3http://perldoc.perl.org

signals the variable. A
 false value is returned if the timeout is reached, and a true value

otherwise. In either case, the variable is re-locked upon return.

Like cond_wait, this function may take a shared, locked variable
 as an additional
parameter; in this case the first parameter is an unlocked condition variable protected by a
distinct lock variable.

Again like cond_wait, waking up and reacquiring the lock are not
 atomic, and you should
always check your desired condition after this
 function returns. Since the timeout is an
absolute value, however, it
 does not have to be recalculated with each pass:

 lock($var);
 my $abs = time() + 15;
 until ($ok = desired_condition($var)) {
 last if !cond_timedwait($var, $abs);
 }
 # we got it if $ok, otherwise we timed out!

cond_signal VARIABLE

The cond_signal function takes a locked variable as a parameter
 and unblocks one thread
that's cond_waiting on that variable. If
 more than one thread is blocked in a cond_wait on
that variable,
 only one (and which one is indeterminate) will be unblocked.

If there are no threads blocked in a cond_wait on the variable,
 the signal is discarded. By
always locking before signaling, you can
 (with care), avoid signaling before another thread has
entered cond_wait().

cond_signal will normally generate a warning if you attempt to use it
 on an unlocked
variable. On the rare occasions where doing this may be
 sensible, you can skip the warning
with

 { no warnings 'threads'; cond_signal($foo) }

cond_broadcast VARIABLE

The cond_broadcast function works similarly to cond_signal. cond_broadcast,
though, will unblock all the threads that are
 blocked in a cond_wait on the locked variable,
rather than only one.

NOTES
threads::shared is designed to disable itself silently if threads are
 not available. If you want access to
threads, you must use threads
 before you use threads::shared. threads will emit a warning if
you
 use it after threads::shared.

BUGS
bless is not supported on shared references. In the current version, bless will only bless the thread
local reference and the blessing
 will not propagate to the other threads. This is expected to be

implemented in a future version of Perl.

Does not support splice on arrays!

Taking references to the elements of shared arrays and hashes does not
 autovivify the elements, and
neither does slicing a shared array/hash
 over non-existent indices/keys autovivify the elements.

share() allows you to share $hashref->{key} without giving any error
 message. But the
$hashref->{key} is not shared, causing the error
 "locking can only be used on shared values" to
occur when you attempt to lock $hasref->{key}.

AUTHOR
Arthur Bergman <arthur at contiller.se>

Perl version 5.8.8 documentation - threads::shared

Page 4http://perldoc.perl.org

threads::shared is released under the same license as Perl

Documentation borrowed from the old Thread.pm

SEE ALSO
threads, perlthrtut, http://www.perl.com/pub/a/2002/06/11/threads.html

